We extend the result of Ball and Nguyen on the jump of entropy under convolution for log-concave random vectors. We show that the result holds for any pair of vectors (not necessarily identically distributed) and that a similar inequality holds for the Fisher information, thus providing a quantitative Blachmann–Stam inequality.
Accepted:
Published online:
Pierre Bizeul 1
@article{CRMATH_2023__361_G2_487_0, author = {Pierre Bizeul}, title = {Entropy and {Information} jump for log-concave vectors}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--493}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.390}, language = {en}, }
Pierre Bizeul. Entropy and Information jump for log-concave vectors. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 487-493. doi : 10.5802/crmath.390. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.390/
[1] Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2014 | DOI | MR | Zbl
[2] Entropy jumps in the presence of a spectral gap, Duke Math. J., Volume 119 (2003) no. 1, pp. 41-63 | DOI | MR | Zbl
[3] Entropy jumps for isotropic log-concave random vectors and spectral gap, Stud. Math., Volume 213 (2012) no. 1, pp. 81-96 | DOI | MR | Zbl
[4] Quantitative stability of the entropy power inequality, IEEE Trans. Inf. Theory, Volume 64 (2018) no. 8, pp. 5691-5703 | DOI | Zbl
[5] Stability of the Shannon-Stam inequality via the Föllmer process, Probab. Theory Relat. Fields, Volume 177 (2020) no. 3-4, pp. 891-922 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy