[Parcité intrinsèque des solutions de Kantorovich]
Soient
Let
Accepté le :
Publié le :
Bamdad Hosseini 1 ; Stefan Steinerberger 2

@article{CRMATH_2022__360_G10_1173_0, author = {Bamdad Hosseini and Stefan Steinerberger}, title = {Intrinsic {Sparsity} of {Kantorovich} solutions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1173--1175}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.392}, language = {en}, }
Bamdad Hosseini; Stefan Steinerberger. Intrinsic Sparsity of Kantorovich solutions. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1173-1175. doi : 10.5802/crmath.392. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.392/
[1] Tres observaciones sobre el algebra lineal, Rev., Ser. A, Univ. Nac. Tucumán, Volume 5 (1946), pp. 147-151 | Zbl
[2] Remarks on the Monge-Kantorovich problem in the discrete setting, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 2, pp. 207-213 | DOI | MR | Zbl
[3] Theorie der endlichen und unendlichen Graphen, Teubner-Archiv zur Mathematik, 6, Teubner, 1936 | Zbl
[4] Optimal transport: discretization and algorithms, Geometric partial differential equations. Part 2 (Handbook of Numerical Analysis), Volume 22, Elsevier, 2021, pp. 133-212 | DOI | MR | Zbl
[5] A certain zero-sum two-person game equivalent to an optimal assignment problem, Contributions to the theory of games. Vol. 2 (Annals of Mathematics Studies), Volume 28, Princeton University Press, 1953, pp. 5-12 | MR | Zbl
[6] Computational optimal transport: With applications to data science, Found. Trends Mach. Learn., Volume 11 (2018) no. 5-6, pp. 355-407 | DOI | Zbl
Cité par Sources :
Commentaires - Politique