[Parcité intrinsèque des solutions de Kantorovich]
Soient et deux ensembles de points de cardinaux respectifs et ; et les mesures de probabilité associées. Quand , un résultat de Birkhoff assure que le problème de Kantorovitch a une solution qui résout aussi le problème de Monge : une bijection réalise le transport optimal. Quand , nous montrons que le problème de Kantorovitch admet une solution telle que chaque point de X se déplace vers au plus points de Y, et réciproquement, chaque point de Y reçoit de la masse d’au plus points de X.
Let be two finite sets of points having and points with and being the associated uniform probability measures. A result of Birkhoff implies that if , then the Kantorovich problem has a solution which also solves the Monge problem: optimal transport can be realized with a bijection . This is impossible when . We observe that when , there exists a solution of the Kantorovich problem such that the mass of each point in is moved to at most different points in and that, conversely, each point in receives mass from at most points in .
Accepté le :
Publié le :
Bamdad Hosseini 1 ; Stefan Steinerberger 2
@article{CRMATH_2022__360_G10_1173_0, author = {Bamdad Hosseini and Stefan Steinerberger}, title = {Intrinsic {Sparsity} of {Kantorovich} solutions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1173--1175}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.392}, language = {en}, }
Bamdad Hosseini; Stefan Steinerberger. Intrinsic Sparsity of Kantorovich solutions. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1173-1175. doi : 10.5802/crmath.392. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.392/
[1] Tres observaciones sobre el algebra lineal, Rev., Ser. A, Univ. Nac. Tucumán, Volume 5 (1946), pp. 147-151 | Zbl
[2] Remarks on the Monge-Kantorovich problem in the discrete setting, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 2, pp. 207-213 | DOI | MR | Zbl
[3] Theorie der endlichen und unendlichen Graphen, Teubner-Archiv zur Mathematik, 6, Teubner, 1936 | Zbl
[4] Optimal transport: discretization and algorithms, Geometric partial differential equations. Part 2 (Handbook of Numerical Analysis), Volume 22, Elsevier, 2021, pp. 133-212 | DOI | MR | Zbl
[5] A certain zero-sum two-person game equivalent to an optimal assignment problem, Contributions to the theory of games. Vol. 2 (Annals of Mathematics Studies), Volume 28, Princeton University Press, 1953, pp. 5-12 | MR | Zbl
[6] Computational optimal transport: With applications to data science, Found. Trends Mach. Learn., Volume 11 (2018) no. 5-6, pp. 355-407 | DOI | Zbl
Cité par Sources :
Commentaires - Politique