In this paper, we prove the theorem announced in the title.
Révisé le :
Accepté le :
Publié le :
Adel Alahmadi 1 ; Florian Luca 2, 3, 4
@article{CRMATH_2022__360_G10_1177_0, author = {Adel Alahmadi and Florian Luca}, title = {There are no {Carmichael} numbers of the form $2^np+1$ with $p$ prime}, journal = {Comptes Rendus. Math\'ematique}, pages = {1177--1181}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.393}, language = {en}, }
Adel Alahmadi; Florian Luca. There are no Carmichael numbers of the form $2^np+1$ with $p$ prime. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1177-1181. doi : 10.5802/crmath.393. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.393/
[1] There are infinitely many Carmichael numbers, Ann. Math., Volume 139 (1994) no. 3, pp. 703-722 | DOI | MR | Zbl
[2] Sierpiński and Carmichael numbers, Trans. Am. Math. Soc., Volume 367 (2015) no. 1, pp. 355-376 | DOI | Zbl
[3] Carmichael numbers in the sequence , Math. Comput., Volume 85 (2016) no. 297, pp. 357-377 | DOI | MR | Zbl
[4] On the density of odd integers of the form and related questions, J. Number Theory, Volume 11 (1979), pp. 257-263 | DOI | MR | Zbl
[5] Primes in intervals of bounded length, Bull. Am. Math. Soc., Volume 52 (2015) no. 2, pp. 171-222 | DOI | MR | Zbl
[6] The impossibility of certain types of Carmichael numbers, Integers, Volume 12 (2012) no. 5, pp. 951-964 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique