Comptes Rendus
Number theory
A counterexample of two Romanov type conjectures
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1183-1185.

In this note, we disprove two Romanov type conjectures posed by Chen.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.425
Classification: 11A41, 11A67

Yuchen Ding 1

1 School of Mathematical Science, Yangzhou University, Yangzhou 225002, People’s Republic of China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G10_1183_0,
     author = {Yuchen Ding},
     title = {A counterexample of two {Romanov} type conjectures},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1183--1185},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.425},
     language = {en},
}
TY  - JOUR
AU  - Yuchen Ding
TI  - A counterexample of two Romanov type conjectures
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1183
EP  - 1185
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.425
LA  - en
ID  - CRMATH_2022__360_G10_1183_0
ER  - 
%0 Journal Article
%A Yuchen Ding
%T A counterexample of two Romanov type conjectures
%J Comptes Rendus. Mathématique
%D 2022
%P 1183-1185
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.425
%G en
%F CRMATH_2022__360_G10_1183_0
Yuchen Ding. A counterexample of two Romanov type conjectures. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1183-1185. doi : 10.5802/crmath.425. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.425/

[1] J. G. van der Corput On de Polignac’s conjecture, Simon Stevin, Volume 27 (1950), pp. 99-105 | MR

[2] Pál Erdős On the integers of the form 2 k +p and some related problems, Summa Brasil. Math., Volume 2 (1950), pp. 113-123 | MR | Zbl

[3] Hao Pan; Hongze Li The Romanoff theorem revisited, Acta Arith., Volume 135 (2008) no. 2, pp. 137-142 | MR | Zbl

[4] Alphonse de Polignac Recherches nouvelles sur les nombres prEmiers, C. R. Acad. Sci. Paris, Volume 29 (1849), pp. 738-739

[5] Alphonse de Polignac Six propositions arithmologiques déduites du crible d’Eratosthène, Nouv. Ann. Math., Volume 8 (1849), pp. 423-429

[6] Nikolaĭ P. Romanov Über einige Sätze der additiven Zahlentheorie, Math. Ann., Volume 109 (1934), pp. 668-678 | Zbl

Cited by Sources:

Comments - Policy