Comptes Rendus
Algebraic geometry
Triple lines on a cubic threefold
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 747-755.

The present paper deals with lines contained in a smooth complex cubic threefold. It is well-known that the set of lines of the second type on a cubic threefold is a curve on its Fano surface. Here we give a description of the singularities of this curve.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.410
Classification: 14J10, 14J29, 14H20

Gloire Grâce Bockondas 1; Samuel Boissière 2

1 Département de Mathématiques, Université Marien Ngouabi, Brazzaville, Congo
2 Samuel Boissière, Laboratoire de Mathématiques et Applications, UMR 7348 du CNRS, Bâtiment H3, Boulevard Marie et Pierre Curie, Site du Futuroscope, TSA 61125, 86073 Poitiers Cedex 9, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G4_747_0,
     author = {Gloire Gr\^ace Bockondas and Samuel Boissi\`ere},
     title = {Triple lines on a cubic threefold},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {747--755},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.410},
     language = {en},
}
TY  - JOUR
AU  - Gloire Grâce Bockondas
AU  - Samuel Boissière
TI  - Triple lines on a cubic threefold
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 747
EP  - 755
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.410
LA  - en
ID  - CRMATH_2023__361_G4_747_0
ER  - 
%0 Journal Article
%A Gloire Grâce Bockondas
%A Samuel Boissière
%T Triple lines on a cubic threefold
%J Comptes Rendus. Mathématique
%D 2023
%P 747-755
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.410
%G en
%F CRMATH_2023__361_G4_747_0
Gloire Grâce Bockondas; Samuel Boissière. Triple lines on a cubic threefold. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 747-755. doi : 10.5802/crmath.410. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.410/

[1] Allen B. Altman; Steven L. Kleiman Foundations of the theory of Fano schemes, Compos. Math., Volume 34 (1977) no. 1, p. 3-–47 | Numdam | MR | Zbl

[2] Samuel Boissière; Chiara Camere; Alessandra Sarti Cubic threefolds and hyperkähler manifolds uniformized by the 10-dimensional complex ball, Math. Ann., Volume 373 (2019) no. 3-4, pp. 1429-1455 | DOI | Zbl

[3] Samuel Boissière; Alessandra Sarti Counting lines on surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 6 (2007) no. 1, p. 39–52 | Numdam | MR | Zbl

[4] Herbert C. Clemens; Phillip A. Griffiths The intermediate Jacobian of the cubic threefold, Ann. Math., Volume 95 (1972), pp. 281-356 | DOI | MR | Zbl

[5] Daniel Huybrechts The geometry of cubic hypersurfaces (2020) (preprint)

[6] Martí Lahoz; Juan C. Naranjo; Andrés Rojas Geometry of Prym semicanonical pencils and an application to cubic threefolds (2021) (https://arxiv.org/abs/2106.08683, to appear in Mathematische Nachrichten)

[7] Jacob P. Murre Algebraic equivalence modulo rational equivalence on a cubic threefold, Compos. Math., Volume 25 (1972) no. 2, pp. 161-206 | Numdam | MR | Zbl

[8] Xavier Roulleau Elliptic curve configurations on Fano surfaces, Manuscr. Math., Volume 129 (2009) no. 3, pp. 161-206 | Zbl

[9] Xavier Roulleau The Fano surface of the Fermat cubic threefold, Proc. Am. Math. Soc., Volume 139 (2011) no. 10, p. 3405–3412 | MR | Zbl

[10] The Sage Developers Sagemath, the Sage Mathematics Software System (Version 3.7.7), 2020 (https://www.sagemath.org.)

[11] Andreĭ N. Tjurin The geometry of the Fano surface of a nonsingular cubic and Torellitheorems for Fano surfaces and cubics, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 5 (1971)) no. 3, pp. 498-529 | Zbl

[12] Andreĭ N. Tjurin On the set of singularities of the Poincaré divisor of the Picard variety of the Fano surface of a nonsingular cubic, Math. USSR, Izv., Volume 6 (1973) no. 5, pp. 938-948 | DOI | Zbl

Cited by Sources:

Comments - Policy