The present paper deals with lines contained in a smooth complex cubic threefold. It is well-known that the set of lines of the second type on a cubic threefold is a curve on its Fano surface. Here we give a description of the singularities of this curve.
Accepted:
Published online:
Gloire Grâce Bockondas 1; Samuel Boissière 2
@article{CRMATH_2023__361_G4_747_0, author = {Gloire Gr\^ace Bockondas and Samuel Boissi\`ere}, title = {Triple lines on a cubic threefold}, journal = {Comptes Rendus. Math\'ematique}, pages = {747--755}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.410}, language = {en}, }
Gloire Grâce Bockondas; Samuel Boissière. Triple lines on a cubic threefold. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 747-755. doi : 10.5802/crmath.410. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.410/
[1] Foundations of the theory of Fano schemes, Compos. Math., Volume 34 (1977) no. 1, p. 3-–47 | Numdam | MR | Zbl
[2] Cubic threefolds and hyperkähler manifolds uniformized by the 10-dimensional complex ball, Math. Ann., Volume 373 (2019) no. 3-4, pp. 1429-1455 | DOI | Zbl
[3] Counting lines on surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 6 (2007) no. 1, p. 39–52 | Numdam | MR | Zbl
[4] The intermediate Jacobian of the cubic threefold, Ann. Math., Volume 95 (1972), pp. 281-356 | DOI | MR | Zbl
[5] The geometry of cubic hypersurfaces (2020) (preprint)
[6] Geometry of Prym semicanonical pencils and an application to cubic threefolds (2021) (https://arxiv.org/abs/2106.08683, to appear in Mathematische Nachrichten)
[7] Algebraic equivalence modulo rational equivalence on a cubic threefold, Compos. Math., Volume 25 (1972) no. 2, pp. 161-206 | Numdam | MR | Zbl
[8] Elliptic curve configurations on Fano surfaces, Manuscr. Math., Volume 129 (2009) no. 3, pp. 161-206 | Zbl
[9] The Fano surface of the Fermat cubic threefold, Proc. Am. Math. Soc., Volume 139 (2011) no. 10, p. 3405–3412 | MR | Zbl
[10] Sagemath, the Sage Mathematics Software System (Version 3.7.7), 2020 (https://www.sagemath.org.)
[11] The geometry of the Fano surface of a nonsingular cubic and Torellitheorems for Fano surfaces and cubics, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 5 (1971)) no. 3, pp. 498-529 | Zbl
[12] On the set of singularities of the Poincaré divisor of the Picard variety of the Fano surface of a nonsingular cubic, Math. USSR, Izv., Volume 6 (1973) no. 5, pp. 938-948 | DOI | Zbl
Cited by Sources:
Comments - Policy