Nous prouvons qu’un groupe algébrique sur un corps
We prove that an algebraic group over a field
Révisé le :
Accepté le :
Publié le :
Zev Rosengarten 1

@article{CRMATH_2023__361_G2_559_0, author = {Zev Rosengarten}, title = {Picard {Groups} of {Algebraic} {Groups} and an {Affineness} {Criterion}}, journal = {Comptes Rendus. Math\'ematique}, pages = {559--564}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.419}, language = {en}, }
Zev Rosengarten. Picard Groups of Algebraic Groups and an Affineness Criterion. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 559-564. doi : 10.5802/crmath.419. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.419/
[1] Linear Algebraic Groups, Graduate Texts in Mathematics, 126, Springer, 1991 | Zbl
[2] Units On Product Varieties, 2006 (available at http://math.stanford.edu/~conrad/papers/unitthm.pdf)
[3] Schémas en Groupes, Lecture Notes in Mathematics, I, II, III,, Springer, 1970
[4] Éléments de géométrie algébrique. IV : Étude locale des schémas et des morphismes de schémas, Seconde partie, Publ. Math., Inst. Hautes Étud. Sci., Volume 24 (1965), pp. 5-231 | Zbl
[5] On the Picard Group: Torsion and the Kernel Induced by a Faithfully Flat Map, J. Algebra, Volume 183 (1996) no. 2, pp. 420-455 | DOI | Zbl
[6] Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Published for the Tata Institute of Fundamental Research, Bombay byOxford University Press, 1970
[7] Translation-Invariant Line Bundles On Linear Algebraic Groups, J. Algebr. Geom. (2020) | DOI | Zbl
[8] Tate Duality In Positive Dimension Over Function Fields (2021) (https://arxiv.org/abs/1805.00522, to appear in Memoirs of the American Mathematical Society)
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier