Comptes Rendus
Numerical analysis, Partial differential equations
On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 535-558.

We study a finite volume scheme for the approximation of the solution to convection diffusion equations with nonlinear convection and Robin boundary conditions. The scheme builds on the interpretation of such a continuous equation as the hydrodynamic limit of some simple exclusion jump process. We show that the scheme admits a unique discrete solution, that the natural bounds on the solution are preserved, and that it encodes the second principle of thermodynamics in the sense that some free energy is dissipated along time. The convergence of the scheme is then rigorously established thanks to compactness arguments. Numerical simulations are finally provided, highlighting the overall good behavior of the scheme.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.421
Classification: 65M08, 65M12, 35K51, 35Q92, 92D25

Clément Cancès 1; Juliette Venel 2

1 Inria, Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France.
2 Univ. Polytechnique Hauts-de-France, INSA Hauts-de-France, CERAMATHS – Laboratoire de Matériaux Céramiques et de Mathématiques, F-59313 Valenciennes, France.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G2_535_0,
     author = {Cl\'ement Canc\`es and Juliette Venel},
     title = {On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {535--558},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.421},
     language = {en},
}
TY  - JOUR
AU  - Clément Cancès
AU  - Juliette Venel
TI  - On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 535
EP  - 558
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.421
LA  - en
ID  - CRMATH_2023__361_G2_535_0
ER  - 
%0 Journal Article
%A Clément Cancès
%A Juliette Venel
%T On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations
%J Comptes Rendus. Mathématique
%D 2023
%P 535-558
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.421
%G en
%F CRMATH_2023__361_G2_535_0
Clément Cancès; Juliette Venel. On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 535-558. doi : 10.5802/crmath.421. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.421/

[1] Ahmed Ait Hammou Oulhaj Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer, Numer. Methods Partial Differ. Equations, Volume 34 (2018) no. 3, pp. 857-880 | DOI | Zbl

[2] Boris Andreianov; Clément Cancès; Ayman Moussa A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs, J. Funct. Anal., Volume 273 (2017) no. 12, pp. 3633-3670 | DOI | Zbl

[3] Jean-David Benamou; Guillaume Carlier; Maxime Laborde An augmented Lagrangian approach to Wasserstein gradient flows and applications, Gradient flows: from theory to application (ESAIM Proc. Surveys), Volume 54, EDP Sciences, Les Ulis, 2016, pp. 1-17 | Zbl

[4] Thierry Bodineau; Joel Lebowitz; Clément Mouhot; Cédric Villani Lyapunov functionals for boundary-driven nonlinear drift–diffusion equations, Nonlinearity, Volume 27 (2014) no. 9, pp. 2111-2132 | DOI | Zbl

[5] Konstantin Brenner; Clément Cancès; Danielle Hilhorst Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure, Comput. Geosci., Volume 17 (2013) no. 3, pp. 573-597 | DOI | Zbl

[6] Christophe Buet; Stéphane Dellacherie On the Chang and Cooper scheme applied to a linear Fokker-Planck equation, Commun. Math. Sci., Volume 8 (2010) no. 4, pp. 1079-1090 | DOI | Zbl

[7] Martin Burger; Marco Di Francesco; Jan-Frederik Pietschmann; Bärbel Schlake Nonlinear cross-diffusion with size-exclusion, SIAM J. Math. Anal., Volume 42 (2010) no. 6, pp. 2842-2871 | DOI | Zbl

[8] Clément Cancès; Claire Chainais-Hillairet; Jürgen Fuhrmann; Benoît Gaudeul A numerical analysis focused comparison of several finite volume schemes for a unipolar degenerated drift-diffusion model, IMA J. Numer. Anal., Volume 41 (2021) no. 1, pp. 271-314 | DOI | Zbl

[9] Clément Cancès; Claire Chainais-Hillairet; Benoît Merlet; Federica Raimondi; Juliette Venel Mathematical analysis of a thermodynamically consistent reduced model for iron corrosion (2022) (working paper or preprint, https://arxiv.org/abs/2201.13193)

[10] Clément Cancès; Thomas O. Gallouët; Gabriele Todeschi A variational finite volume scheme for Wasserstein gradient flows, Numer. Math., Volume 146 (2020) no. 3, pp. 437-480 | DOI | Zbl

[11] José A. Carrillo; Katy Craig; Li Wang; Chaozhen Wei Primal dual methods for Wasserstein gradient flows, Found. Comput. Math. (2021) (Online first) | DOI | Zbl

[12] Claire Chainais-Hillairet; Maxime Herda Large-time behaviour of a family of finite volume schemes for boundary-driven convection–diffusion equations, IMA J. Numer. Anal., Volume 40 (2020) no. 4, pp. 2473-2504 | DOI | Zbl

[13] Marianne Chatard Asymptotic behavior of the Scharfetter–Gummel scheme for the drift-diffusion model, Finite volumes for complex applications VI. Problems & perspectives. Volume 1, 2 (Springer Monographs in Mathematics), Volume 4, Springer, 2011, pp. 235-243 | DOI | Zbl

[14] Klaus Deimling Nonlinear functional analysis, Springer, 1985 | DOI | Zbl

[15] Robert Eymard; Jürgen Fuhrmann; Klaus Gärtner A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems, Numer. Math., Volume 102 (2006) no. 3, pp. 463-495 | DOI | Zbl

[16] Robert Eymard; Thierry Gallouët; Mustapha Ghilani; Raphaèle Herbin Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes, IMA J. Numer. Anal., Volume 18 (1998) no. 4, pp. 563-594 | DOI | Zbl

[17] Robert Eymard; Thierry Gallouët; Cindy Guichard; Raphaèle Herbin; Roland Masson TP or not TP, that is the question, Comput. Geosci., Volume 18 (2014) no. 3-4, pp. 285-296 | DOI | Zbl

[18] Robert Eymard; Thierry Gallouët; Raphaèle Herbin Finite volume methods, Solution of equations in R n (Part 3). Techniques of scientific computing (Part 3) (P. G. Ciarlet et al., eds.) (Handbook of Numerical Analysis), Volume 7, North-Holland, 2000, pp. 713-1020 | DOI | Zbl

[19] Francis Filbet; Maxime Herda A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure, Numer. Math., Volume 137 (2017) no. 3, pp. 535-577 | DOI | Zbl

[20] Klaus Gärtner; Lennard Kamenski Why Do We Need Voronoi Cells and Delaunay Meshes?, Numerical Geometry, Grid Generation and Scientific Computing (Vladimir A. Garanzha; Lennard Kamenski; Hang Si, eds.) (Lecture Notes in Computational Science and Engineering), Volume 131, Springer, 2019, pp. 45-60 | DOI | Zbl

[21] Martin Heida Convergences of the squareroot approximation scheme to the Fokker–Planck operator, Math. Models Methods Appl. Sci., Volume 28 (2018) no. 13, pp. 2599-2635 | DOI | Zbl

[22] Martin Heida; Markus Kantner; Artur Stephan Consistency and convergence for a family of finite volume discretizations of the Fokker–Planck operator, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021) no. 6, pp. 3017-3042 | DOI | Zbl

[23] Claude Kipnis; Claudio Landim Scaling limits of interacting particle systems, Grundlehrender der Mathematischen Wissenschaften, 320, Springer, 1999 | DOI | Zbl

[24] Jean Leray; Jules Schauder Topologie et équations fonctionnelles, Ann. Sci. Éc. Norm. Supér., Volume 51 (1934) no. 3, pp. 45-78 | DOI | Numdam | Zbl

[25] Wuchen Li; Jiangeng Lu; Li Wang Fisher information regularization schemes for Wasserstein gradient flows, J. Comput. Phys., Volume 416 (2020), 109449, 23 pages | Zbl

[26] Han Cheng Lie; Konstantin Fackeldey; Marcus Weber A square root approximation of transition rates for a Markov state model, SIAM J. Matrix Anal. Appl., Volume 34 (2013) no. 2, pp. 738-756 | Zbl

[27] Daniel Matthes; Horst Osberger Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM, Math. Model. Numer. Anal., Volume 48 (2014) no. 3, pp. 697-726 | DOI | Numdam | Zbl

[28] Alexander Mielke A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, Volume 24 (2011) no. 4, pp. 1329-1346 | DOI | Zbl

[29] Alexander Mielke; Mark A. Peletier; D. R. Michiel Renger On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion, Potential Anal., Volume 41 (2014) no. 4, pp. 1293-1327 | DOI | Zbl

[30] Mark A. Peletier; Riccarda Rossi; Giuseppe Savaré; Oliver Tse Jump processes as generalized gradient flows, Calc. Var. Partial Differ. Equ., Volume 61 (2022) no. 1, 33, 85 pages | Zbl

Cited by Sources:

Comments - Policy