Comptes Rendus
Algebra
Skew graded (A ) hypersurface singularities
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 521-534.

For a skew version of a graded (A ) hypersurface singularity A, we study the stable category of graded maximal Cohen-Macaulay modules over A. As a consequence, we see that A has countably infinite Cohen–Macaulay representation type and is not a noncommutative graded isolated singularity.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.415
Classification: 16G50, 16S38, 18G80, 05C50

Kenta Ueyama 1

1 Department of Mathematics, Faculty of Education, Hirosaki University, 1 Bunkyocho, Hirosaki, Aomori 036-8560, Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G2_521_0,
     author = {Kenta Ueyama},
     title = {Skew graded $(A_\infty )$ hypersurface singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {521--534},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.415},
     language = {en},
}
TY  - JOUR
AU  - Kenta Ueyama
TI  - Skew graded $(A_\infty )$ hypersurface singularities
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 521
EP  - 534
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.415
LA  - en
ID  - CRMATH_2023__361_G2_521_0
ER  - 
%0 Journal Article
%A Kenta Ueyama
%T Skew graded $(A_\infty )$ hypersurface singularities
%J Comptes Rendus. Mathématique
%D 2023
%P 521-534
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.415
%G en
%F CRMATH_2023__361_G2_521_0
Kenta Ueyama. Skew graded $(A_\infty )$ hypersurface singularities. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 521-534. doi : 10.5802/crmath.415. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.415/

[1] Michael Artin; James J. Zhang Noncommutative projective schemes, Adv. Math., Volume 109 (1994) no. 2, pp. 228-287 | DOI | Zbl

[2] Maurice Auslander; Idun Reiten Cohen-Macaulay modules for graded Cohen-Macaulay rings and their completions, Commutative algebra (Berkeley, CA, 1987) (Mathematical Sciences Research Institute Publications), Volume 15, Springer, 1989, pp. 21-31 | DOI | Zbl

[3] Grzegorz Bobiński; Christof Geiß; Andrzej Skowroński Classification of discrete derived categories, Cent. Eur. J. Math., Volume 2 (2004) no. 1, pp. 19-49 | DOI | Zbl

[4] Ragnar-Olaf Buchweitz; David Eisenbud; Jürgen Herzog Cohen-Macaulay modules on quadrics, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) (Lecture Notes in Mathematics), Volume 1273, Springer, 1985, pp. 58-116 | DOI | Zbl

[5] Ragnar-Olaf Buchweitz; Gert-Martin Greuel; Frank-Olaf Schreyer Cohen–Macaulay modules on hypersurface singularities II, Invent. Math., Volume 88 (1987) no. 1, pp. 165-182 | DOI | Zbl

[6] Ragnar-Olaf Buchweitz; Osamu Iyama; Kota Yamaura Tilting theory for Gorenstein rings in dimension one, Forum Math. Sigma, Volume 8 (2020), e36, 37 pages | Zbl

[7] David Eisenbud; Jürgen Herzog The classification of homogeneous Cohen–Macaulay rings of finite representation type, Math. Ann., Volume 280 (1988) no. 2, pp. 347-352 | DOI | Zbl

[8] Chris Godsil; Gordon Royle Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer, 2001 | DOI | Zbl

[9] Dieter Happel Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119, Cambridge University Press, 1988 | DOI | Zbl

[10] Ji-Wei He; Yu Ye Clifford deformations of Koszul Frobenius algebras and noncommutative quadrics (2021) (https://arxiv.org/abs/1905.04699v2)

[11] Akihiro Higashitani; Kenta Ueyama Combinatorial study of stable categories of graded Cohen–Macaulay modules over skew quadric hypersurfaces, Collect. Math., Volume 73 (2022) no. 1, pp. 43-54 | DOI | Zbl

[12] Osamu Iyama Tilting Cohen–Macaulay representations, Proceedings of the international congress of mathematicians, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Volume II. Invited lectures, World Scientific; Sociedade Brasileira de Matemática, 2018, pp. 125-162 | Zbl

[13] Osamu Iyama; Kota Yamaura Tilting theory for large Cohen–Macaulay modules over Gorenstein rings in dimension one (in preparation)

[14] Graham J. Leuschke; Roger Wiegand Cohen–Macaulay representations, Mathematical Surveys and Monographs, 181, American Mathematical Society, 2012 | Zbl

[15] Izuru Mori; Kenta Ueyama Noncommutative Knörrer’s periodicity theorem and noncommutative quadric hypersurfaces, Algebra Number Theory, Volume 16 (2022) no. 2, pp. 467-504 | DOI | Zbl

[16] S. Paul Smith Some finite-dimensional algebras related to elliptic curves, Representation theory of algebras and related topics (Mexico City, 1994) (Conference Proceedings, Canadian Mathematical Society), Volume 19, American Mathematical Society, 1996, pp. 315-348 | Zbl

[17] S. Paul Smith; Micahel Van den Bergh Noncommutative quadric surfaces, J. Noncommut. Geom., Volume 7 (2013) no. 3, pp. 817-856 | DOI | Zbl

[18] Branden Stone Non-Gorenstein isolated singularities of graded countable Cohen–Macaulay type, Connections Between Algebra, Combinatorics, and Geometry (Springer Proceedings in Mathematics & Statistics), Volume 76, Springer, 2014, pp. 299-317 | DOI | Zbl

[19] Kenta Ueyama Graded maximal Cohen–Macaulay modules over noncommutative graded Gorenstein isolated singularities, J. Algebra, Volume 383 (2013), pp. 85-103 | DOI | Zbl

[20] Yuji Yoshino Cohen–Macaulay Modules over Cohen–Macaulay Rings, London Mathematical Society Lecture Note Series, 146, Cambridge University Press, 1990 | DOI | Zbl

Cited by Sources:

Comments - Policy