Comptes Rendus
Number theory
A Note on Barker Sequences and the L 1 -norm of Littlewood Polynomials
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 609-616.

In this note, we investigate the L 1 -norms of Barker polynomials and, more generally, Littlewood polynomials over the unit circle, and give improvements to some existing results.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.428
Classification: 11B83, 11C08, 30C10

Gang Yu 1

1 Department of Mathematical Sciences, Kent State University, East Summit Street, Kent, OH 45458, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G3_609_0,
     author = {Gang Yu},
     title = {A {Note} on {Barker} {Sequences} and the $L_1$-norm of {Littlewood} {Polynomials}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {609--616},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.428},
     language = {en},
}
TY  - JOUR
AU  - Gang Yu
TI  - A Note on Barker Sequences and the $L_1$-norm of Littlewood Polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 609
EP  - 616
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.428
LA  - en
ID  - CRMATH_2023__361_G3_609_0
ER  - 
%0 Journal Article
%A Gang Yu
%T A Note on Barker Sequences and the $L_1$-norm of Littlewood Polynomials
%J Comptes Rendus. Mathématique
%D 2023
%P 609-616
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.428
%G en
%F CRMATH_2023__361_G3_609_0
Gang Yu. A Note on Barker Sequences and the $L_1$-norm of Littlewood Polynomials. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 609-616. doi : 10.5802/crmath.428. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.428/

[1] Paul Balister; Béla Bollobás; Robert Morris; Julian Sahasrabudhe; Marius Tiba Flat Littlewood polynomials exist, Ann. Math., Volume 192 (2020) no. 3, pp. 977-1004 | MR | Zbl

[2] R. H. Barker Group synchronizing of binary digital systems, Communication Theory, Butterworths Sci. Pub., 1953, pp. 273-287

[3] Peter Borwein; Michael J. Mossinghoff Barker sequences and flat polynomials, Number theory and polynomials (London Mathematical Society Lecture Note Series), Volume 352, Cambridge University Press, 2008, pp. 71-88 | MR | Zbl

[4] Peter Borwein; Michael J. Mossinghoff Wieferich pairs and Barker sequences II, LMS J. Comput. Math., Volume 17 (2014), pp. 24-32 | DOI | MR | Zbl

[5] Laurent Habsieger Sur un problème de Newman, C. R. Acad. Sci. Paris, Volume 324 (1997) no. 7, pp. 765-769 | DOI | MR | Zbl

[6] Jonathan Jedwab; Sheelagh Lloyd A note on the nonexistence of Barker sequences, Des. Codes Cryptography, Volume 2 (1992) no. 1, pp. 93-97 | DOI | MR | Zbl

[7] Thomas W. Körner On a polynomial of Byrnes, Bull. Lond. Math. Soc., Volume 12 (1980) no. 3, pp. 219-224 | DOI | MR | Zbl

[8] Ka Hin Leung; Bernhard Schmidt The field descent method, Des. Codes Cryptography, Volume 36 (2005) no. 2, pp. 171-188 | DOI | MR | Zbl

[9] Ka Hin Leung; Bernhard Schmidt The anti-field-descent method, J. Comb. Theory, Ser. A, Volume 139 (2016), pp. 87-131 | DOI | MR | Zbl

[10] Michael J. Mossinghoff Wieferich pairs and Barker sequences, Des. Codes Cryptography, Volume 53 (2009) no. 3, pp. 149-163 | DOI | MR | Zbl

[11] Donald J. Newman Norms of polynomials, Am. Math. Mon., Volume 67 (1960), pp. 778-779 | DOI | MR | Zbl

[12] Bahman Saffari Barker sequences and Littlewood’s “two-sided conjectures” on polynomials with ±1 coefficients, Séminaire d’analyse harmonique. Année 1989/90., Université de Paris-Sud, Mathématiques, 1989, pp. 139-151

[13] Bernhard Schmidt Cyclotomic integers and finite geometry, J. Am. Math. Soc., Volume 12 (1999) no. 4, pp. 929-952 | DOI | MR | Zbl

[14] Kai-Uwe Schmidt; Jürgen Willms Barker sequences of odd length, Des. Codes Cryptography, Volume 80 (2016) no. 2, pp. 409-414 | DOI | MR | Zbl

[15] Richard Turyn On Barker codes of even length, IEEE Trans. Inf. Theory, Volume 51 (1963) no. 9, p. 1256

[16] Richard Turyn; James Storer On the binary sequences, Proc. Am. Math. Soc., Volume 12 (1961), pp. 396-399 | MR | Zbl

Cited by Sources:

Comments - Policy