In this paper we define a continuous version of multiple zeta functions. They can be analytically continued to meromorphic functions on with only simple poles at some special hyperplanes. The evaluations of these functions at positive integers (continuous multiple zeta values) satisfy the shuffle product. We give a detailed analysis about the depth structure of continuous multiple zeta values. There are also sum formulas for continuous multiple zeta values. Lastly we calculate some special continuous multiple zeta values in terms of special values of multiple polylogarithms.
Revised:
Accepted:
Published online:
Jiangtao Li 1
@article{CRMATH_2023__361_G3_697_0, author = {Jiangtao Li}, title = {A continuous version of multiple zeta functions and multiple zeta values}, journal = {Comptes Rendus. Math\'ematique}, pages = {697--713}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.440}, language = {en}, }
Jiangtao Li. A continuous version of multiple zeta functions and multiple zeta values. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 697-713. doi : 10.5802/crmath.440. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.440/
[1] Association of multiple zeta values with positive knots via Feynman diagrams up to loops, Phys. Lett., B, Volume 393 (1997) no. 3-4, pp. 403-412 | DOI | MR | Zbl
[2] Iterated path integrals, Bull. Am. Math. Soc., Volume 83 (1977), pp. 831-879 | DOI | MR | Zbl
[3] Double zeta values and modular forms, Automorphic forms and zeta functions, World Scientific, 2006, pp. 71-106 | DOI | Zbl
[4] Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math., Volume 114 (1995) no. 2, pp. 197-318 | DOI | MR | Zbl
[5] The dihedral Lie algebras and Galois symmetries of , Duke Math. J., Volume 110 (2001) no. 3, pp. 397-487 | DOI | MR
[6] Motivic correlators, cluster varieties, and Zagier’s conjecture on (2018) (https://arxiv.org/abs/1803.08585)
[7] Derivation and double shuffle relations for multiple zeta values, Compos. Math., Volume 142 (2006) no. 2, pp. 307-338 | DOI | MR | Zbl
[8] Periods, Mathematics unlimited—2001 and beyond, Springer, 2001, pp. 771-808 | DOI | Zbl
[9] Multiple zeta-star values and multiple integrals (2017) (https://arxiv.org/abs/1405.6499)
[10] Hyperbolic manifolds and special values of Dedekind zeta functions, Invent. Math., Volume 83 (1986), pp. 285-301 | DOI | MR | Zbl
[11] Polylogarithms, zeta-functions, and algebraic K-theory of fields, Arithmetic algebraic geometry (Progress in Mathematics), Volume 89, Birkhäuser, 1991, pp. 392-430 | MR | Zbl
[12] Analytic continuation of multiple zeta functions, Proc. Am. Math. Soc., Volume 128 (1999) no. 5, pp. 1275-1283 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy