[Continuity of roots after Rabinoff]
The content of this paper is a generalization of a theorem by Joseph Rabinoff: if is a finite family of pointed and rational polyhedra in such that there exists a fan in that contains all the recession cones of the polyhedra of , if is a complete non-archimedean field, if is a connected and regular -analytic space (in the sense of Berkovich) and is a closed -analytic subset of which is relative complete intersection and contained in the relative interior of over , then the quasifiniteness of implies its flatness and finiteness; moreover, all the finite fibers of have the same length. This namely gives a analytic justification to the concept of stable intersection used in the theory of tropical intersection.
Ce papier propose une généralisation d’un théorème de Joseph Rabinoff : si est une famille finie de polyèdres rationnels pointés dans telle qu’il existe un éventail dans contenant tous les cônes de récession des polyèdres de , si est un corps non archimédien complet, si est un espace -analytique (au sens de Berkovich) régulier connexe et un fermé -analytique de de complète intersection relative et contenu dans l’intérieur relatif de au-dessus de , alors la quasi-finitude du morphisme implique sa platitude et sa finitude. De plus, toutes les fibres finies de ont la même longueur. Cela fournit notamment une justification analytique au concept d’intersection stable utilisé en théorie de l’intersection tropicale.
Revised:
Accepted:
Published online:
Emeryck Marie 1
@article{CRMATH_2023__361_G3_685_0, author = {Emeryck Marie}, title = {Continuit\'e des racines d{\textquoteright}apr\`es {Rabinoff}}, journal = {Comptes Rendus. Math\'ematique}, pages = {685--696}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.439}, language = {fr}, }
Emeryck Marie. Continuité des racines d’après Rabinoff. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 685-696. doi : 10.5802/crmath.439. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.439/
[1] Spectral theory and analytic geometry over non-archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990 | MR | Zbl
[2] Étale cohomology for non-archimedean analytic spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 5-161 | DOI | Numdam | MR | Zbl
[3] The geometry of toric varieties, Russ. Math. Surv., Volume 33 (1978), pp. 97-154 | DOI | MR | Zbl
[4] Réduction en famille d’espaces affinoïdes (prépublication, https://webusers.imj-prg.fr/~antoine.ducros/red-aff.pdf)
[5] Variation de la dimension relative en géométrie analytique -adique, Compos. Math., Volume 143 (2007) no. 6, pp. 1511-1532 | DOI | MR | Zbl
[6] Les espaces de Berkovich sont excellents, Ann. Inst. Fourier, Volume 59 (2009) no. 4, pp. 1407-1516 | Numdam | MR | Zbl
[7] Families of Berkovich spaces, Astérisque, 400, Société Mathématique de France, 2018
[8] Introduction to toric varieties, Annals of Mathematics Studies, Princeton University Press, 1993 no. 131 | DOI
[9] Tropical toric geometry, Toric topology (Contemporary Mathematics), Volume 460, American Mathematical Society, 2008, pp. 197-207 | DOI | MR | Zbl
[10] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1987 | DOI
[11] Lifting tropical intersections, Doc. Math., Volume 18 (2013), pp. 121-176 | DOI | MR | Zbl
[12] Analytification is the limit of all tropicalizations, Math. Res. Lett., Volume 16 (2009) no. 2-3, pp. 543-556 | DOI | MR | Zbl
[13] Tropical analytic geometry, Newton polygons and tropical interesections, Adv. Math., Volume 229 (2012) no. 6, pp. 3192-3255 | DOI | MR | Zbl
[14] First steps in tropical geometry, Idempotent mathematics and mathematical physics (Contemporary Mathematics), Volume 377, American Mathematical Society, 2005, pp. 289-317 | DOI | MR | Zbl
[15] On local properties of non-archimedean spaces I, Ann. Math., Volume 318 (2000) no. 3, pp. 585-607 | DOI | MR
Cited by Sources:
Comments - Policy