Ce papier propose une généralisation d’un théorème de Joseph Rabinoff : si
The content of this paper is a generalization of a theorem by Joseph Rabinoff: if
Révisé le :
Accepté le :
Publié le :
Emeryck Marie 1

@article{CRMATH_2023__361_G3_685_0, author = {Emeryck Marie}, title = {Continuit\'e des racines d{\textquoteright}apr\`es {Rabinoff}}, journal = {Comptes Rendus. Math\'ematique}, pages = {685--696}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.439}, language = {fr}, }
Emeryck Marie. Continuité des racines d’après Rabinoff. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 685-696. doi : 10.5802/crmath.439. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.439/
[1] Spectral theory and analytic geometry over non-archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990 | MR | Zbl
[2] Étale cohomology for non-archimedean analytic spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 5-161 | DOI | Numdam | MR | Zbl
[3] The geometry of toric varieties, Russ. Math. Surv., Volume 33 (1978), pp. 97-154 | DOI | MR | Zbl
[4] Réduction en famille d’espaces affinoïdes (prépublication, https://webusers.imj-prg.fr/~antoine.ducros/red-aff.pdf)
[5] Variation de la dimension relative en géométrie analytique
[6] Les espaces de Berkovich sont excellents, Ann. Inst. Fourier, Volume 59 (2009) no. 4, pp. 1407-1516 | Numdam | MR | Zbl
[7] Families of Berkovich spaces, Astérisque, 400, Société Mathématique de France, 2018
[8] Introduction to toric varieties, Annals of Mathematics Studies, Princeton University Press, 1993 no. 131 | DOI
[9] Tropical toric geometry, Toric topology (Contemporary Mathematics), Volume 460, American Mathematical Society, 2008, pp. 197-207 | DOI | MR | Zbl
[10] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1987 | DOI
[11] Lifting tropical intersections, Doc. Math., Volume 18 (2013), pp. 121-176 | DOI | MR | Zbl
[12] Analytification is the limit of all tropicalizations, Math. Res. Lett., Volume 16 (2009) no. 2-3, pp. 543-556 | DOI | MR | Zbl
[13] Tropical analytic geometry, Newton polygons and tropical interesections, Adv. Math., Volume 229 (2012) no. 6, pp. 3192-3255 | DOI | MR | Zbl
[14] First steps in tropical geometry, Idempotent mathematics and mathematical physics (Contemporary Mathematics), Volume 377, American Mathematical Society, 2005, pp. 289-317 | DOI | MR | Zbl
[15] On local properties of non-archimedean spaces I, Ann. Math., Volume 318 (2000) no. 3, pp. 585-607 | DOI | MR
Cité par Sources :
Commentaires - Politique