Comptes Rendus
Number theory
Projective varieties have countably many real forms
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 863-867.

In this note, we check that a complex projective algebraic variety has (at most) countably many real forms. We more generally prove it when the field of reals is replaced with a field that has only countably many finite extensions up to isomorphism. The verification consists in gathering known results about automorphism groups and Galois cohomology. This contrasts with the recent discovery by A. Bot of an affine real variety with uncountably many real forms.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.441
Classification: 12G05, 12F10, 11S25, 11E72, 14J50
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G5_863_0,
     author = {Timoth\'ee L. Labinet},
     title = {Projective varieties have countably many real forms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {863--867},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.441},
     language = {en},
}
TY  - JOUR
AU  - Timothée L. Labinet
TI  - Projective varieties have countably many real forms
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 863
EP  - 867
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.441
LA  - en
ID  - CRMATH_2023__361_G5_863_0
ER  - 
%0 Journal Article
%A Timothée L. Labinet
%T Projective varieties have countably many real forms
%J Comptes Rendus. Mathématique
%D 2023
%P 863-867
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.441
%G en
%F CRMATH_2023__361_G5_863_0
Timothée L. Labinet. Projective varieties have countably many real forms. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 863-867. doi : 10.5802/crmath.441. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.441/

[1] Armand Borel; Jean-Pierre Serre Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv., Volume 39 (1964), pp. 111-169 | DOI | Zbl

[2] Anna Bot A smooth complex rational affine surface with uncountably many real forms (2021) (https://arxiv.org/abs/2105.08044)

[3] Michel Brion Some structure theorems for algebraic groups, Algebraic groups: structure and actions (Proceedings of Symposia in Pure Mathematics), Volume 94, American Mathematical Society, 2017, pp. 53-126 | Zbl

[4] Tien-Cuong Dinh; Keiji Oguiso A surface with discrete and nonfinitely generated automorphism group, Duke Math. J., Volume 168 (2019) no. 6, pp. 941-966 | Zbl

[5] Tien-Cuong Dinh; Keiji Oguiso; Xun Yu Smooth complex projective rational surfaces with infinitely many real forms (2021) (https://arxiv.org/abs/2106.05687, to appear in J. Reine Angew. Math.)

[6] Tien-Cuong Dinh; Keiji Oguiso; Xun Yu Smooth rational projective varieties with non-finitely generated discrete automorphism group and infinitely many real forms, Math. Ann., Volume 383 (2022), pp. 399-414 | DOI | Zbl

[7] Alexandre Grothendieck Techniques de construction et théorèmes d’existence en géométrie algébrique IV : les schémas de Hilbert, Séminaire Bourbaki. Vol. 6. Années 1960/61, Société Mathématique de France, 1960, pp. 249-276 | Zbl

[8] John Lesieutre A projective variety with discrete, non-finitely generated automorphism group, Invent. Math., Volume 212 (2018) no. 1, pp. 189-211 | DOI | Zbl

[9] Hideyuki Matsumura; Frans Oort Representability of group functors, and automorphisms of algebraic schemes, Invent. Math., Volume 4 (1967), pp. 1-25 | DOI | Zbl

[10] Teruhisa Matsusaka Polarized varieties, fields of moduli and generalized Kummer varieties of polarized abelian varieties, Am. J. Math., Volume 80 (1958), pp. 45-82 | DOI | Zbl

[11] Arthur Mattuck Abelian varieties over p-adic ground fields, Ann. Math., Volume 62 (1955), pp. 92-119 | DOI | Zbl

[12] David Mumford Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970

[13] Jean-Pierre Serre Cohomologie galoisienne, Lecture Notes in Mathematics, Springer, 1994 | DOI | Zbl

[14] John Tate WC-groups over 𝔭-adic fields, Bourbaki Seminar. Vol. 4. Years 1956/57-1957/58, Société Mathématique de France, 1995, pp. 265-277

[15] Nguyêñ Quôć Thǎńg; Nguyêñ Duy Tân On the Galois and flat cohomology of unipotent algebraic groups over local and global function fields. I, J. Algebra, Volume 319 (2008) no. 10, pp. 4288-4324 | DOI | Zbl

Cited by Sources:

Comments - Policy