Schauder’s fixed point theorem is used to derive the existence of solutions to a semilinear heat equation. The equation features a nonlinear term that depends on the time-integral of the unknown on the whole, a priori given, interval of existence.
Révisé le :
Accepté le :
Publié le :
Mots clés : Semilinear heat equation, nonlocal in time, existence of global solutions
Christoph Walker 1
@article{CRMATH_2023__361_G4_825_0, author = {Christoph Walker}, title = {A {Remark} on a {Nonlocal-in-Time} {Heat} {Equation}}, journal = {Comptes Rendus. Math\'ematique}, pages = {825--831}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.443}, language = {en}, }
Christoph Walker. A Remark on a Nonlocal-in-Time Heat Equation. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 825-831. doi : 10.5802/crmath.443. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.443/
[1] Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear Theory, Monographs in Mathematics, 89, Birkhäuser, 1995 | DOI | Zbl
[2] Compacité de l’opérateur solution d’une équation non linéaire , C. R. Acad. Sci. Paris, Volume 286 (1978) no. 23, pp. 1113-1116 | MR | Zbl
[3] Compacité de l’opérateur définissant la solution d’une équation d’évolution non homogène, C. R. Math. Acad. Sci. Paris, Volume 284 (1977) no. 14, pp. 799-802 | Zbl
[4] Nonlocal complement value problem for a global in time parabolic equation, J. Elliptic Parabol. Equ., Volume 8 (2022) no. 2, pp. 767-789 | DOI | MR | Zbl
[5] Initial boundary value problem for a nonlocal in time parabolic equation, Sib. Èlektron. Mat. Izv., Volume 15 (2018), pp. 1311-1319 | MR | Zbl
[6] Boundary value problem for a global in time parabolic equation, Math. Methods Appl. Sci., Volume 44 (2021) no. 1, pp. 1118-1126 | DOI | MR | Zbl
[7] Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral, J. Elliptic Parabol. Equ., Volume 7 (2021) no. 2, pp. 623-634 | DOI | MR | Zbl
[8] Modeling the dynamics of polymer chains in water solution. Application to sensor design, J. Phys., Conf. Ser., Volume 894 (2017) no. 1, 012088
[9] On positive solutions of some system of reaction-diffusion equations with nonlocal initial conditions, J. Reine Angew. Math., Volume 660 (2011), pp. 149-179 | MR | Zbl
[10] Some results based on maximal regularity regarding population models with age and spatial structure, J. Elliptic Parabol. Equ., Volume 4 (2018) no. 1, pp. 69-105 | DOI | MR | Zbl
[11] Strong solutions to a nonlocal-in-time semilinear heat equation, Q. Appl. Math., Volume 79 (2021) no. 2, pp. 265-272 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique