Comptes Rendus
Partial differential equations
A Remark on a Nonlocal-in-Time Heat Equation
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 825-831.

Schauder’s fixed point theorem is used to derive the existence of solutions to a semilinear heat equation. The equation features a nonlinear term that depends on the time-integral of the unknown on the whole, a priori given, interval of existence.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.443
Classification: 35K58
Keywords: Semilinear heat equation, nonlocal in time, existence of global solutions

Christoph Walker 1

1 Leibniz Universität Hannover, Institut für Angewandte Mathematik, Welfengarten 1, 30167 Hannover, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G4_825_0,
     author = {Christoph Walker},
     title = {A {Remark} on a {Nonlocal-in-Time} {Heat} {Equation}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {825--831},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.443},
     language = {en},
}
TY  - JOUR
AU  - Christoph Walker
TI  - A Remark on a Nonlocal-in-Time Heat Equation
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 825
EP  - 831
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.443
LA  - en
ID  - CRMATH_2023__361_G4_825_0
ER  - 
%0 Journal Article
%A Christoph Walker
%T A Remark on a Nonlocal-in-Time Heat Equation
%J Comptes Rendus. Mathématique
%D 2023
%P 825-831
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.443
%G en
%F CRMATH_2023__361_G4_825_0
Christoph Walker. A Remark on a Nonlocal-in-Time Heat Equation. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 825-831. doi : 10.5802/crmath.443. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.443/

[1] Herbert Amann Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear Theory, Monographs in Mathematics, 89, Birkhäuser, 1995 | DOI | Zbl

[2] Pierre Baras Compacité de l’opérateur fu solution d’une équation non linéaire (du/dt)+Auf, C. R. Acad. Sci. Paris, Volume 286 (1978) no. 23, pp. 1113-1116 | MR | Zbl

[3] Pierre Baras; Jean-Claude Hassan; Laurent Véron Compacité de l’opérateur définissant la solution d’une équation d’évolution non homogène, C. R. Math. Acad. Sci. Paris, Volume 284 (1977) no. 14, pp. 799-802 | Zbl

[4] Jean-Daniel Djida; Guy F. Foghem Gounoue; Yannick K. Tchaptchié Nonlocal complement value problem for a global in time parabolic equation, J. Elliptic Parabol. Equ., Volume 8 (2022) no. 2, pp. 767-789 | DOI | MR | Zbl

[5] Victor N. Starovoitov Initial boundary value problem for a nonlocal in time parabolic equation, Sib. Èlektron. Mat. Izv., Volume 15 (2018), pp. 1311-1319 | MR | Zbl

[6] Victor N. Starovoitov Boundary value problem for a global in time parabolic equation, Math. Methods Appl. Sci., Volume 44 (2021) no. 1, pp. 1118-1126 | DOI | MR | Zbl

[7] Victor N. Starovoitov Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral, J. Elliptic Parabol. Equ., Volume 7 (2021) no. 2, pp. 623-634 | DOI | MR | Zbl

[8] Victor N. Starovoitov; Botagoz Syarovoitova Modeling the dynamics of polymer chains in water solution. Application to sensor design, J. Phys., Conf. Ser., Volume 894 (2017) no. 1, 012088

[9] Christoph Walker On positive solutions of some system of reaction-diffusion equations with nonlocal initial conditions, J. Reine Angew. Math., Volume 660 (2011), pp. 149-179 | MR | Zbl

[10] Christoph Walker Some results based on maximal regularity regarding population models with age and spatial structure, J. Elliptic Parabol. Equ., Volume 4 (2018) no. 1, pp. 69-105 | DOI | MR | Zbl

[11] Christoph Walker Strong solutions to a nonlocal-in-time semilinear heat equation, Q. Appl. Math., Volume 79 (2021) no. 2, pp. 265-272 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy