Let
Our bound is optimal under the Small Set Expansion Hypothesis, and answers a question of Olesker-Taylor and Zanetti, who obtained such a result with
In order to obtain our result, we show how to embed a negative-type semi-metric
Révisé le :
Accepté le :
Publié le :
Vishesh Jain 1 ; Huy Pham 2 ; Thuy-Duong Vuong 3

@article{CRMATH_2023__361_G5_869_0, author = {Vishesh Jain and Huy Pham and Thuy-Duong Vuong}, title = {Dimension reduction for maximum matchings and the {Fastest} {Mixing} {Markov} {Chain}}, journal = {Comptes Rendus. Math\'ematique}, pages = {869--876}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.447}, language = {en}, }
TY - JOUR AU - Vishesh Jain AU - Huy Pham AU - Thuy-Duong Vuong TI - Dimension reduction for maximum matchings and the Fastest Mixing Markov Chain JO - Comptes Rendus. Mathématique PY - 2023 SP - 869 EP - 876 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.447 LA - en ID - CRMATH_2023__361_G5_869_0 ER -
Vishesh Jain; Huy Pham; Thuy-Duong Vuong. Dimension reduction for maximum matchings and the Fastest Mixing Markov Chain. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 869-876. doi : 10.5802/crmath.447. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.447/
[1] Dimensionality reduction: beyond the Johnson-Lindenstrauss bound, Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, SIAM (2011), pp. 868-887 | DOI | Zbl
[2] Fastest mixing Markov chain on graphs with symmetries, SIAM J. Optim., Volume 20 (2009) no. 2, pp. 792-819 | DOI | Zbl
[3] Fastest mixing Markov chain on a graph, SIAM Rev., Volume 46 (2004) no. 4, pp. 667-689 | DOI | Zbl
[4] The Johnson–Lindenstrauss Lemma for Clustering and Subspace Approximation: From Coresets to Dimension Reduction (2022) (https://arxiv.org/abs/2205.00371)
[5] Geometry of cuts and metrics, Algorithms and Combinatorics, 15, Springer, 1997 | DOI
[6] Semidefinite programming in combinatorial optimization, Math. Program., Volume 79 (1997) no. 1, pp. 143-161 | DOI | Zbl
[7] Cheeger Inequalities for Vertex Expansion and Reweighted Eigenvalues (2022) (https://arxiv.org/abs/2203.06168)
[8] Optimality of the Johnson-Lindenstrauss lemma, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), IEEE (2017), pp. 633-638 | DOI
[9] The complexity of approximating vertex expansion, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, IEEE (2013), pp. 360-369 | DOI
[10] Performance of Johnson-Lindenstrauss transform for k-means and k-medians clustering, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019), pp. 1027-1038 | DOI | Zbl
[11] Geometric Bounds on the Fastest Mixing Markov Chain, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)
[12] Graph expansion and the unique games conjecture, Proceedings of the forty-second ACM symposium on Theory of computing (2010), pp. 755-764 | DOI | Zbl
[13] Bounding fastest mixing, Electron. Commun. Probab., Volume 10 (2005), pp. 282-296 | Zbl
- Cheeger inequalities for directed graphs and hypergraphs using reweighted eigenvalues, Proceedings of the 55th annual ACM SIGACT symposium on theory of computing, STOC '23, Orlando, FL, USA, June 20–23, 2023, New York, NY: Association for Computing Machinery (ACM), 2023, pp. 1834-1847 | DOI:10.1145/3564246.3585139 | Zbl:7844715
Cité par 1 document. Sources : zbMATH
Commentaires - Politique