A well-known result of Fulton–Lazarsfeld ensures the connectedness of degeneracy loci under an ampleness condition. We extend it to positive characteristic, along with the variants for degeneracy loci of symmetric and alternating maps of even rank, due to Tu in characteristic zero. The proof uses the explicit determination of the top étale cohomology group of an algebraic variety, a result communicated by Esnault.
Accepted:
Revised after acceptance:
Published online:
Rémi Lodh 1
@article{CRMATH_2023__361_G6_959_0, author = {R\'emi Lodh}, title = {The connectedness of degeneracy loci in positive characteristic}, journal = {Comptes Rendus. Math\'ematique}, pages = {959--964}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.448}, language = {en}, }
Rémi Lodh. The connectedness of degeneracy loci in positive characteristic. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 959-964. doi : 10.5802/crmath.448. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.448/
[1] Geometric Algebra, Interscience Tracts in Pure and Applied Mathematics, 3, Interscience Publishers, 1957
[2] Exposé XVIII: La formule de dualité globale, Théorie des topos et cohomologie étale des schémas (SGA 4), tome 3 (Michel Artin; Alexander Grothendieck; Jean-Louis Verdier; Pierre Deligne; Bernard Saint-Donat, eds.) (Lecture Notes in Mathematics), Volume 305, Springer, 1973 | DOI | Zbl
[3] Codimension and connectedness of degeneracy loci over local rings, Math. Z., Volume 286 (2017) no. 1-2, pp. 723-740 | DOI | MR | Zbl
[4] On the connectedness of degeneracy loci and special divisors, Acta Math., Volume 146 (1981), pp. 271-283 | DOI | MR | Zbl
[5] Positive polynomials for ample vector bundles, Ann. Math., Volume 118 (1983), pp. 35-60 | DOI | MR | Zbl
[6] Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie), Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 5-361 (written in collaboration with J. Dieudonné) | Numdam | Zbl
[7] Éléments de géométrie algébrique I, Grundlehren der Mathematischen Wissenschaften, 166, Springer, 1971
[8] Ample vector bundles, Publ. Math., Inst. Hautes Étud. Sci., Volume 29 (1966), pp. 63-94 | Numdam | Zbl
[9] Exposé X. Gabber’s modification theorem (log smooth case), Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. Séminaire à l’École Polytechnique 2006–2008 (Luc Illusie; Yves Laszlo; Fabrice Orgogozo, eds.) (Astérisque), Société Mathématique de France, 2014 no. 363-364, pp. 167-212 | Zbl
[10] Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., Volume 83 (1996), pp. 51-93 | Numdam | Zbl
[11] Positivity in Algebraic Geometry II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 49, Springer, 2004
[12] Quadratic and Hermitian Forms, Grundlehren der Mathematischen Wissenschaften, 270, Springer, 1985 | DOI
[13] Numerically positive polynomials for -ample vector bundles, Math. Ann., Volume 294 (1992) no. 4, pp. 579-590 | MR | Zbl
[14] The connectedness of symmetric and skew-symmetric degeneracy loci: even ranks, Trans. Am. Math. Soc., Volume 313 (1989) no. 1, pp. 381-392 | MR | Zbl
[15] The connectedness of degeneracy loci, Topics in algebra. Part 2: Commutative rings and algebraic groups (Banach Center Publications), Volume 26, PWN-Polish Scientific Publishers, 1990 no. 2, pp. 235-248 | MR | Zbl
Cited by Sources:
Comments - Policy