Comptes Rendus
Théorie des nombres
Moment estimates for the exponential sum with higher divisor functions
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 419-424.
Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.45

Mayank Pandey 1

1 Department of Mathematics, California Institute of Technology, Pasadena, CA 91125 USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G5_419_0,
     author = {Mayank Pandey},
     title = {Moment estimates for the exponential sum with higher divisor functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {419--424},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.45},
     language = {en},
}
TY  - JOUR
AU  - Mayank Pandey
TI  - Moment estimates for the exponential sum with higher divisor functions
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 419
EP  - 424
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.45
LA  - en
ID  - CRMATH_2022__360_G5_419_0
ER  - 
%0 Journal Article
%A Mayank Pandey
%T Moment estimates for the exponential sum with higher divisor functions
%J Comptes Rendus. Mathématique
%D 2022
%P 419-424
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.45
%G en
%F CRMATH_2022__360_G5_419_0
Mayank Pandey. Moment estimates for the exponential sum with higher divisor functions. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 419-424. doi : 10.5802/crmath.45. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.45/

[1] daniel-fischer L p norm of the Dirichlet Kernel Math StackExchange. https://math.stackexchange.com/questions/2031547 (version from 11-27-2016)

[2] Henryk Iwaniec; Emmanuel Kowalski Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004, xi+615 pages | Zbl

[3] Matti Jutila On exponential sums involving the Ramanujan function, Proc. Indian Acad. Sci., Math. Sci., Volume 97 (1987) no. 1-3, pp. 157-166 | DOI | MR

[4] Eugen Keil Moment estimates for exponential sums over k-free numbers, Int. J. Number Theory, Volume 9 (2013) no. 3, pp. 607-619 | DOI | MR | Zbl

[5] Kaisa Matomäki; Maksym Radziwiłł; Terence Tao Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges (2017) (https://arxiv.org/abs/1707.01315)

[6] Robert C. Vaughan; Trevor D. Wooley On the Distribution of Generating Functions, Bull. Lond. Math. Soc., Volume 30 (1998) no. 2, pp. 113-122 | DOI | MR

Cité par Sources :

Commentaires - Politique