In categorical data analysis, the
Accepté le :
Publié le :
Jose A. A. Andrade 1 ; Pushpa Rathie 2

@article{CRMATH_2023__361_G6_1063_0, author = {Jose A. A. Andrade and Pushpa Rathie}, title = {Exact {Posterior} distribution of risk ratio in the {Kumaraswamy{\textendash}Binomial} model}, journal = {Comptes Rendus. Math\'ematique}, pages = {1063--1069}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.469}, language = {en}, }
TY - JOUR AU - Jose A. A. Andrade AU - Pushpa Rathie TI - Exact Posterior distribution of risk ratio in the Kumaraswamy–Binomial model JO - Comptes Rendus. Mathématique PY - 2023 SP - 1063 EP - 1069 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.469 LA - en ID - CRMATH_2023__361_G6_1063_0 ER -
Jose A. A. Andrade; Pushpa Rathie. Exact Posterior distribution of risk ratio in the Kumaraswamy–Binomial model. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1063-1069. doi : 10.5802/crmath.469. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.469/
[1] Bayesian Risk Ratio Analysis, Am. Stat., Volume 35 (1981) no. 4, pp. 254-257 | MR
[2] Bayesian analysis of
[3] Exact posterior computation for the binomial-Kumaraswamy model, Adv. Comput. Math., Volume 46 (2020) no. 6, 80, 13 pages | MR | Zbl
[4] On exact posterior distributions using H-functions, J. Comput. Appl. Math., Volume 290 (2015), pp. 459-475 | DOI | MR | Zbl
[5] Exact Posterior Computation in Non-Conjugate Gaussian Location-Scale Parameters Models, Commun. Nonlinear Sci. Numer. Simul., Volume 53 (2017), pp. 111-129 | DOI | MR | Zbl
[6] Exact Bayesian computation using H-functions, Comput. Appl. Math., Volume 38 (2018), pp. 2277-2293 | DOI | MR | Zbl
[7] Estimation of reservoir yield and storage distribution using moments analysis, J. Hydrol., Volume 182 (1996) no. 1-4, pp. 259-275 | DOI
[8] The
[9] A generalized probability density function for double-bounded random processes, J. Hydrol., Volume 46 (1980) no. 1-2, pp. 79-88 | DOI
[10] The Special Functions and Their Approximations, Academic Press Inc., 1979
[11] Bayesian Analysis of a
Cité par Sources :
Commentaires - Politique