Comptes Rendus
Statistics
Exact Posterior distribution of risk ratio in the Kumaraswamy–Binomial model
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1063-1069.

In categorical data analysis, the 2×2 contingency tables are commonly used to assess the association between groups and responses, this is achieved by using some measures of association, such as the contingency coefficient, odds ratio, risk relative, etc. In a Bayesian approach, the risk ratio is modeled according to a Beta-Binomial model, which has exact posterior distribution, due to the conjugacy property of the model. In this work, we provide the exact posterior distribution of the relative risk for the non-conjugate Kumaraswamy–Binomial model. The results are based on special functions and we give exact expressions for the posterior density, moments, and cumulative distribution. An example illustrates the theory.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.469
Classification: 62C10

Jose A. A. Andrade 1; Pushpa Rathie 2

1 Department of Statistics and Applied Mathematics, Federal University of Ceara, 60455-670, Fortaleza-Ce, Brazil
2 Department of Statistics, University of Brasilia, 70910-900, Brasilia-DF, Brazil
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G6_1063_0,
     author = {Jose A. A. Andrade and Pushpa Rathie},
     title = {Exact {Posterior} distribution of risk ratio in the {Kumaraswamy{\textendash}Binomial} model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1063--1069},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.469},
     language = {en},
}
TY  - JOUR
AU  - Jose A. A. Andrade
AU  - Pushpa Rathie
TI  - Exact Posterior distribution of risk ratio in the Kumaraswamy–Binomial model
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1063
EP  - 1069
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.469
LA  - en
ID  - CRMATH_2023__361_G6_1063_0
ER  - 
%0 Journal Article
%A Jose A. A. Andrade
%A Pushpa Rathie
%T Exact Posterior distribution of risk ratio in the Kumaraswamy–Binomial model
%J Comptes Rendus. Mathématique
%D 2023
%P 1063-1069
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.469
%G en
%F CRMATH_2023__361_G6_1063_0
Jose A. A. Andrade; Pushpa Rathie. Exact Posterior distribution of risk ratio in the Kumaraswamy–Binomial model. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1063-1069. doi : 10.5802/crmath.469. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.469/

[1] John Aitchison; John Bacon-Shone Bayesian Risk Ratio Analysis, Am. Stat., Volume 35 (1981) no. 4, pp. 254-257 | MR

[2] Murray Aitkin; Tom Chadwick Bayesian analysis of 2×2 contingency tables from comparative trials, 2003

[3] Jose A. A. Andrade Exact posterior computation for the binomial-Kumaraswamy model, Adv. Comput. Math., Volume 46 (2020) no. 6, 80, 13 pages | MR | Zbl

[4] Jose A. A. Andrade; Pushpa N. Rathie On exact posterior distributions using H-functions, J. Comput. Appl. Math., Volume 290 (2015), pp. 459-475 | DOI | MR | Zbl

[5] Jose A. A. Andrade; Pushpa N. Rathie Exact Posterior Computation in Non-Conjugate Gaussian Location-Scale Parameters Models, Commun. Nonlinear Sci. Numer. Simul., Volume 53 (2017), pp. 111-129 | DOI | MR | Zbl

[6] Jose A. A. Andrade; Pushpa N. Rathie; Rafael B. A. Farias Exact Bayesian computation using H-functions, Comput. Appl. Math., Volume 38 (2018), pp. 2277-2293 | DOI | MR | Zbl

[7] S. Fletcher; K. Ponnambalam Estimation of reservoir yield and storage distribution using moments analysis, J. Hydrol., Volume 182 (1996) no. 1-4, pp. 259-275 | DOI

[8] Charles Fox The G and H functions as symmetrical Fourier kernels, Trans. Am. Math. Soc., Volume 98 (1961), pp. 395-429 | MR | Zbl

[9] P. Kumaraswamy A generalized probability density function for double-bounded random processes, J. Hydrol., Volume 46 (1980) no. 1-2, pp. 79-88 | DOI

[10] Yudell L. Luke The Special Functions and Their Approximations, Academic Press Inc., 1979

[11] Philip J. Smith; Sung C. Choi; E. Gunel Bayesian Analysis of a 2×2 Contingency Table with Both Completely and Partially Cross-Classified Data, J. Educ. Stat., Volume 10 (1985) no. 1, pp. 31-43 | DOI

Cited by Sources:

Comments - Policy