In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a simpler proof of the fact that the constant in H.-Q. Li inequality is strictly larger than .
Revised:
Accepted:
Published online:
Ye Zhang 1
@article{CRMATH_2023__361_G7_1107_0, author = {Ye Zhang}, title = {On the {H.-Q.} {Li} inequality on step-two {Carnot} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1107--1114}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.475}, language = {en}, }
Ye Zhang. On the H.-Q. Li inequality on step-two Carnot groups. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1107-1114. doi : 10.5802/crmath.475. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.475/
[1] On gradient bounds for the heat kernel on the Heisenberg group, J. Funct. Anal., Volume 255 (2008) no. 8, pp. 1905-1938 | DOI | MR
[2] Sharp measure contraction property for generalized H-type Carnot groups, Commun. Contemp. Math., Volume 20 (2018) no. 6, 1750081, 24 pages | DOI | MR
[3] Hamilton-Jacobi theory and the heat kernel on Heisenberg groups, J. Math. Pures Appl., Volume 79 (2000) no. 7, pp. 633-689 | DOI | MR
[4] Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, 2007, xxvi+800 pages | MR
[5] Heat kernels for elliptic and sub-elliptic operators. Methods and techniques, Applied and Numerical Harmonic Analysis, Birkhäuser, 2011, xviii+433 pages | DOI | MR
[6] Heat kernels for class nilpotent groups, Stud. Math., Volume 64 (1979) no. 3, pp. 227-238 | DOI | MR
[7] Growth of Taylor coefficients over complex homogeneous spaces, Tôhoku Math. J., Volume 62 (2010) no. 3, pp. 427-474 | DOI | MR
[8] Hypoelliptic heat kernel inequalities on the Heisenberg group, J. Funct. Anal., Volume 221 (2005) no. 2, pp. 340-365 | DOI | MR
[9] Precise estimates for the subelliptic heat kernel on -type groups, J. Math. Pures Appl., Volume 92 (2009) no. 1, pp. 52-85 | DOI | MR
[10] Gradient estimates for the subelliptic heat kernel on -type groups, J. Funct. Anal., Volume 258 (2010) no. 2, pp. 504-533 | DOI | MR
[11] Measure theory and fine properties of functions, Textbooks in Mathematics, CRC Press, 2015, xiv+299 pages | MR
[12] Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press; University of Tokyo Press, 1982, xii+285 pages | MR
[13] Logarithmic Sobolev inequalities on non-isotropic Heisenberg groups, J. Funct. Anal., Volume 283 (2022) no. 2, 109500, 33 pages | DOI | MR
[14] Gradient estimates for the heat semigroup on H-type groups, Potential Anal., Volume 33 (2010) no. 4, pp. 355-386 | DOI | MR
[15] Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int. Math. Res. Not. (2009) no. 13, pp. 2347-2373 | DOI | MR
[16] Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Am. Math. Soc., Volume 258 (1980) no. 1, pp. 147-153 | DOI | MR
[17] The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse, Math., Volume 9 (2000) no. 2, pp. 305-366 | MR
[18] Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg, J. Funct. Anal., Volume 236 (2006) no. 2, pp. 369-394 | DOI | MR
[19] Estimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg, C. R. Math. Acad. Sci. Paris, Volume 344 (2007) no. 8, pp. 497-502 | DOI | MR
[20] Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg, J. Reine Angew. Math., Volume 646 (2010), pp. 195-233 | DOI | MR
[21] The Carnot–Carathéodory distance on -step groups (2021) | arXiv
[22] Revisiting the heat kernel on isotropic and nonisotropic Heisenberg groups, Commun. Partial Differ. Equations, Volume 44 (2019) no. 6, pp. 467-503 | DOI | MR
[23] A complete answer to the Gaveau–Brockett problem (2021) | arXiv
[24] Sub-Riemannian geometry on some step-two Carnot groups (2021) | arXiv
[25] Curvatures of left invariant metrics on Lie groups, Adv. Math., Volume 21 (1976) no. 3, pp. 293-329 | DOI | MR
[26] Singular integrals with flag kernels and analysis on quadratic CR manifolds, J. Funct. Anal., Volume 181 (2001) no. 1, pp. 29-118 | DOI | MR
[27] Transport inequalities, gradient estimates, entropy, and Ricci curvature, Commun. Pure Appl. Math., Volume 58 (2005) no. 7, pp. 923-940 | DOI | MR
[28] Hypoelliptic differential operators and nilpotent groups, Acta Math., Volume 137 (1976) no. 3-4, pp. 247-320 | DOI | MR
[29] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiv+695 pages (with the assistance of Timothy S. Murphy) | MR | Zbl
[30] Harmonic analysis on the Heisenberg group, Progress in Mathematics, 159, Birkhäuser, 1998, xiv+192 pages | DOI | MR
[31] A note on gradient estimates for the heat semigroup on nonisotropic Heisenberg groups (2021) | arXiv
Cited by Sources:
Comments - Policy