In this short article, we determine the bigness of the tangent bundle of the projective bundle associated to a vector bundle on a smooth projective curve .
Révisé le :
Accepté le :
Publié le :
Jeong-Seop Kim 1
@article{CRMATH_2023__361_G7_1115_0, author = {Jeong-Seop Kim}, title = {Bigness of the tangent bundles of projective bundles over curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {1115--1122}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.476}, language = {en}, }
Jeong-Seop Kim. Bigness of the tangent bundles of projective bundles over curves. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1115-1122. doi : 10.5802/crmath.476. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.476/
[1] Vector bundles over an elliptic curve, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 414-452 | DOI | MR | Zbl
[2] On positivity and base loci of vector bundles, Eur. J. Math., Volume 1 (2015) no. 2, pp. 229-249 | DOI | MR | Zbl
[3] Projective manifolds whose tangent bundles are numerically effective, Math. Ann., Volume 289 (1991) no. 1, pp. 169-187 | DOI | MR | Zbl
[4] -folds with numerically effective tangent bundles and second Betti numbers greater than one, Manuscr. Math., Volume 79 (1993) no. 3-4, pp. 225-238 | DOI | MR | Zbl
[5] Fano manifolds with big tangent bundle: a characterisation of , Collect. Math., Volume 74 (2023) no. 3, pp. 639-686 | DOI | MR | Zbl
[6] Examples of Fano manifolds with non-pseudoeffective tangent bundle, J. Lond. Math. Soc., Volume 106 (2022) no. 1, pp. 27-59 | DOI | MR | Zbl
[7] The geometry of moduli spaces of sheaves, Cambridge University Press, 2010 | DOI
[8] Rigidity of rational homogeneous spaces, Proceedings of the international congress of mathematicians (ICM). Volume II: Invited lectures, European Mathematical Society, 2006, pp. 613-626 | Zbl
[9] Hecke curves and Hitchin discriminant, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 5, pp. 801-817 | DOI | Numdam | MR | Zbl
[10] Fano -folds with nef tangent bundles, Math. Res. Lett., Volume 24 (2017) no. 5, pp. 1453-1475 | DOI | MR | Zbl
[11] Bigness of the tangent bundle of a Fano threefold with Picard number two (2022) | arXiv
[12] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (with the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI
[13] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004
[14] Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 49, Springer, 2004 | DOI
[15] The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 449-476 | DOI | MR | Zbl
[16] On Fano manifolds with nef tangent bundles admitting 1-dimensional varieties of minimal rational tangents, Trans. Am. Math. Soc., Volume 354 (2002) no. 7, pp. 2639-2658 | MR | Zbl
[17] Projective manifolds with ample tangent bundles, Ann. Math., Volume 110 (1979) no. 3, pp. 593-606 | DOI | MR | Zbl
[18] Maximal subbundles of vector bundles on a curve, Manuscr. Math., Volume 52 (1985) no. 1-3, pp. 251-256 | DOI | MR | Zbl
[19] A survey on the Campana-Peternell conjecture, Rend. Ist. Mat. Univ. Trieste, Volume 47 (2015), pp. 127-185 | MR | Zbl
[20] Moduli of vector bundles on a compact Riemann surface, Ann. Math., Volume 89 (1969), pp. 14-51 | DOI | MR | Zbl
[21] Uniform families of minimal rational curves on Fano manifolds, Rev. Mat. Complut., Volume 29 (2016) no. 2, pp. 423-437 | DOI | MR | Zbl
[22] Effective divisor classes on a ruled surface, Pac. J. Math., Volume 202 (2002) no. 1, pp. 119-124 | DOI | MR | Zbl
[23] Fano bundles of rank 2 on surfaces, Compos. Math., Volume 76 (1990) no. 1-2, pp. 295-305 | Numdam | MR | Zbl
[24] Fano -folds with nef tangent bundles and Picard numbers greater than one, Math. Z., Volume 276 (2014) no. 1-2, pp. 39-49 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique