[Noeuds doublement bordant et obstruction aux concordances lagrangiennes]
Dans cette note, nous remarquons qu’un résultat d’Eliashberg et Polterovitch permet d’utiliser la notion de nœuds doublement bordant afin d’obstruer la possibilité pour un noeud legendrien d’apparaitre comme une tranche dans une concordance lagrangienne du noeud legendrien trivial d’invariant de Thurston–Bennequin maximal vers lui-même. Cela permet d’obstruer l’existence pour
In this short note we observe that a result of Eliashberg and Polterovitch allows to use the doubly slice genus as an obstruction for a Legendrian knot to be a slice of a Lagrangian concordance from the trivial Legendrian knot with maximal Thurston–Bennequin invariant to itself. This allows to obstruct concordances from the Pretzel knot
Révisé le :
Accepté le :
Publié le :
Baptiste Chantraine 1 ; Noémie Legout 2

@article{CRMATH_2023__361_G10_1605_0, author = {Baptiste Chantraine and No\'emie Legout}, title = {Doubly slice knots and obstruction to {Lagrangian} concordance}, journal = {Comptes Rendus. Math\'ematique}, pages = {1605--1609}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.478}, language = {en}, }
Baptiste Chantraine; Noémie Legout. Doubly slice knots and obstruction to Lagrangian concordance. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1605-1609. doi : 10.5802/crmath.478. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.478/
[1] Ribbon concordance of knots is a partial ordering, Comm. Amer. Math. Soc., Volume 2, pp. 374-379 | DOI | MR | Zbl
[2] Quasi-positivité d’une courbe analytique dans une boule pseudo-convexe, C. R. Math. Acad. Sci. Paris, Volume 332 (2001) no. 9, pp. 825-830 | DOI | MR | Zbl
[3] Lagrangian concordance is not a symmetric relation, Quantum Topol., Volume 6 (2015) no. 3, pp. 451-474 | DOI | MR | Zbl
[4] Obstructions to Lagrangian concordance, Algebr. Geom. Topol., Volume 16 (2016) no. 2, pp. 797-824 | DOI | MR | Zbl
[5] Local Lagrangian
[6] Legendrian contact homology in
[7] Smoothly embedding Seifert fibered spaces in
[8] Rational Witt classes of pretzel knots, Osaka J. Math., Volume 47 (2010) no. 4, pp. 977-1027 | MR | Zbl
[9] Doubly slice knots with low crossing number, New York J. Math., Volume 21 (2015), pp. 1007-1026 | MR | Zbl
[10] Doubly slice odd pretzel knots, Proc. Am. Math. Soc., Volume 148 (2020) no. 12, pp. 5413-5420 | DOI | MR | Zbl
[11] The cardinality of the augmentation category of a Legendrian link, Math. Res. Lett., Volume 24 (2017) no. 6, pp. 1845-1874 | DOI | MR | Zbl
[12] Algebraic functions and closed braids, Topology, Volume 22 (1983), pp. 191-202 | DOI | MR | Zbl
[13] Invertible knot cobordisms, Comment. Math. Helv., Volume 46 (1971), pp. 240-256 | DOI | MR | Zbl
[14] Obstructing Lagrangian concordance for closures of 3-braids (2022) | arXiv
[15] Knot Floer homology obstructs ribbon concordance, Ann. Math., Volume 190 (2019) no. 3, pp. 931-947 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique