Comptes Rendus
Géométrie et Topologie
Doubly slice knots and obstruction to Lagrangian concordance
[Noeuds doublement bordant et obstruction aux concordances lagrangiennes]
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1605-1609.

Dans cette note, nous remarquons qu’un résultat d’Eliashberg et Polterovitch permet d’utiliser la notion de nœuds doublement bordant afin d’obstruer la possibilité pour un noeud legendrien d’apparaitre comme une tranche dans une concordance lagrangienne du noeud legendrien trivial d’invariant de Thurston–Bennequin maximal vers lui-même. Cela permet d’obstruer l’existence pour m4 de concordances du noeud pretzel P(3,-3,-m) vers le noeud trivial. Ces exemples s’avèrent particulièrement intéressants car l’algèbre d’homologie de contact legendrienne ne permet pas d’obstruer une telle concordance.

In this short note we observe that a result of Eliashberg and Polterovitch allows to use the doubly slice genus as an obstruction for a Legendrian knot to be a slice of a Lagrangian concordance from the trivial Legendrian knot with maximal Thurston–Bennequin invariant to itself. This allows to obstruct concordances from the Pretzel knot P(3,-3,-m) when m4 to the unknot. Those examples are of interest because the Legendrian contact homology algebra cannot be used to obstruct such a concordance.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.478
Classification : 57K33, 57K10

Baptiste Chantraine 1 ; Noémie Legout 2

1 Nantes Université, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, UMR 6629, F-44000 Nantes, France
2 Uppsala University, Department of Mathematics, Box 480, 751 06 Uppsala, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G10_1605_0,
     author = {Baptiste Chantraine and No\'emie Legout},
     title = {Doubly slice knots and obstruction to {Lagrangian} concordance},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1605--1609},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.478},
     language = {en},
}
TY  - JOUR
AU  - Baptiste Chantraine
AU  - Noémie Legout
TI  - Doubly slice knots and obstruction to Lagrangian concordance
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1605
EP  - 1609
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.478
LA  - en
ID  - CRMATH_2023__361_G10_1605_0
ER  - 
%0 Journal Article
%A Baptiste Chantraine
%A Noémie Legout
%T Doubly slice knots and obstruction to Lagrangian concordance
%J Comptes Rendus. Mathématique
%D 2023
%P 1605-1609
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.478
%G en
%F CRMATH_2023__361_G10_1605_0
Baptiste Chantraine; Noémie Legout. Doubly slice knots and obstruction to Lagrangian concordance. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1605-1609. doi : 10.5802/crmath.478. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.478/

[1] Ian Agol Ribbon concordance of knots is a partial ordering, Comm. Amer. Math. Soc., Volume 2, pp. 374-379 | DOI | MR | Zbl

[2] Michel Boileau; Stepan Orevkov Quasi-positivité d’une courbe analytique dans une boule pseudo-convexe, C. R. Math. Acad. Sci. Paris, Volume 332 (2001) no. 9, pp. 825-830 | DOI | MR | Zbl

[3] Baptiste Chantraine Lagrangian concordance is not a symmetric relation, Quantum Topol., Volume 6 (2015) no. 3, pp. 451-474 | DOI | MR | Zbl

[4] Christopher Cornwell; Lenhard Ng; Steven Sivek Obstructions to Lagrangian concordance, Algebr. Geom. Topol., Volume 16 (2016) no. 2, pp. 797-824 | DOI | MR | Zbl

[5] Yakov M. Eliashberg; Leonid V. Polterovich Local Lagrangian 2-knots are trivial, Ann. Math., Volume 144 (1996) no. 1, pp. 61-76 | DOI | MR | Zbl

[6] John B. Etnyre; Lenhard Ng Legendrian contact homology in 3 , Surveys in differential geometry 2020. Surveys in 3-manifold topology and geometry (Surveys in Differential Geometry), Volume 25, International Press, Boston, MA, 2022, pp. 103-161 | MR | Zbl

[7] Ahmad Issa; Duncan McCoy Smoothly embedding Seifert fibered spaces in S 4 , Trans. Am. Math. Soc., Volume 373 (2020) no. 7, pp. 4933-4974 | DOI | MR | Zbl

[8] Stanislav Jabuka Rational Witt classes of pretzel knots, Osaka J. Math., Volume 47 (2010) no. 4, pp. 977-1027 | MR | Zbl

[9] Charles Livingston; Jeffrey Meier Doubly slice knots with low crossing number, New York J. Math., Volume 21 (2015), pp. 1007-1026 | MR | Zbl

[10] Clayton McDonald Doubly slice odd pretzel knots, Proc. Am. Math. Soc., Volume 148 (2020) no. 12, pp. 5413-5420 | DOI | MR | Zbl

[11] Lenhard Ng; Dan Rutherford; Vivek Shende; Steven Sivek The cardinality of the augmentation category of a Legendrian link, Math. Res. Lett., Volume 24 (2017) no. 6, pp. 1845-1874 | DOI | MR | Zbl

[12] Lee Rudolph Algebraic functions and closed braids, Topology, Volume 22 (1983), pp. 191-202 | DOI | MR | Zbl

[13] De Witt L. Sumners Invertible knot cobordisms, Comment. Math. Helv., Volume 46 (1971), pp. 240-256 | DOI | MR | Zbl

[14] Angela Wu Obstructing Lagrangian concordance for closures of 3-braids (2022) | arXiv

[15] Ian Zemke Knot Floer homology obstructs ribbon concordance, Ann. Math., Volume 190 (2019) no. 3, pp. 931-947 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique