Comptes Rendus
Operator theory
Integral representation of vertical operators on the Bergman space over the upper half-plane
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1593-1604.

Let Π denote the upper half-plane. In this article, we prove that every vertical operator on the Bergman space 𝒜 2 (Π) over the upper half-plane can be uniquely represented as an integral operator of the form

S φ f(z)= Π f(w)φ(z-w ¯)dμ(w),f𝒜 2 (Π),zΠ,

where φ is an analytic function on Π given by

φ(z)= + ξσ(ξ)e izξ dξ,zΠ

for some σL ( + ). Here dμ(w) is the Lebesgue measure on Π. Later on, with the help of above integral representation, we obtain various operator theoretic properties of the vertical operators.

Also, we give integral representation of the form S φ for all the operators in the C * -algebra generated by Toeplitz operators T a with vertical symbols aL (Π).

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.477
Classification : 30H20, 47A15, 47B35, 47G10
Mots clés : Bergman space, multiplication operator, reducing subspace, Toeplitz operator

Shubham R. Bais 1; D. Venku Naidu 1; Pinlodi Mohan 1

1 Department of Mathematics, Indian Institute of Technology – Hyderabad, Kandi, Sangareddy, Telangana, India 502 284.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G10_1593_0,
     author = {Shubham R. Bais and D. Venku Naidu and Pinlodi Mohan},
     title = {Integral representation of vertical operators on the {Bergman} space over the upper half-plane},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1593--1604},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.477},
     language = {en},
}
TY  - JOUR
AU  - Shubham R. Bais
AU  - D. Venku Naidu
AU  - Pinlodi Mohan
TI  - Integral representation of vertical operators on the Bergman space over the upper half-plane
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1593
EP  - 1604
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.477
LA  - en
ID  - CRMATH_2023__361_G10_1593_0
ER  - 
%0 Journal Article
%A Shubham R. Bais
%A D. Venku Naidu
%A Pinlodi Mohan
%T Integral representation of vertical operators on the Bergman space over the upper half-plane
%J Comptes Rendus. Mathématique
%D 2023
%P 1593-1604
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.477
%G en
%F CRMATH_2023__361_G10_1593_0
Shubham R. Bais; D. Venku Naidu; Pinlodi Mohan. Integral representation of vertical operators on the Bergman space over the upper half-plane. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1593-1604. doi : 10.5802/crmath.477. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.477/

[1] Shubham R. Bais; Dogga Venku Naidu Study of twisted Bargmann transform via Bargmann transform, Forum Math., Volume 33 (2021) no. 6, pp. 1659-1670 | DOI | MR | Zbl

[2] Valentine Bargmann On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., Volume 14 (1961), pp. 187-214 | DOI | MR | Zbl

[3] Rajendra Bhatia Notes on functional analysis, Texts and Readings in Mathematics, 50, Hindustan Book Agency, 2009 | DOI | Zbl

[4] John B. Conway A course in operator theory, Graduate Studies in Mathematics, 21, American Mathematical Society, 2000 | Zbl

[5] Ronald G. Douglas Banach algebra techniques in operator theory, Pure and Applied Mathematics, 49, Academic Press, New Yor, 1972 | Zbl

[6] Kevin Esmeral; Egor A. Maximenko; Nikolai L. Vasilevski C * -algebra generated by angular Toeplitz operators on the weighted Bergman spaces over the upper half-plane, Integral Equations Oper. Theory, Volume 83 (2015) no. 3, pp. 413-428 | DOI | MR | Zbl

[7] Kevin Esmeral; Nikolai L. Vasilevski C*-algebra generated by horizontal Toeplitz operators on the Fock space, Bol. Soc. Mat. Mex., Volume 22 (2016) no. 2, pp. 567-582 | DOI | MR | Zbl

[8] Gerald B. Folland Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, 1989 | DOI | Zbl

[9] Gerald B. Folland Fourier Analysis and Its Applications, The Wadsworth & Brooks/Cole Mathematics Series, Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software, 1992 | Zbl

[10] Sergei M. Grudsky; Raul Quiroga-Barranco; Nikolai L. Vasilevski Commutative C * -algebras of Toeplitz operators and quantization on the unit disk, J. Funct. Anal., Volume 234 (2006) no. 1, pp. 1-44 | DOI | MR | Zbl

[11] Sergei M. Grudsky; Nikolai L. Vasilevski Bergman-Toeplitz operators: radial component influence, Integral Equations Oper. Theory, Volume 40 (2001) no. 1, pp. 16-33 | DOI | MR | Zbl

[12] Sergei M. Grudsky; Nikolai L. Vasilevski Toeplitz operators on the Fock space: radial component effects, Integral Equations Oper. Theory, Volume 44 (2002) no. 1, pp. 10-37 | DOI | MR | Zbl

[13] Crispin Herrera Yañez; Ondrej Hutník; Egor A. Maximenko Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 2, pp. 129-132 | DOI | Numdam | MR | Zbl

[14] Crispin Herrera Yañez; Egor A. Maximenko; Nikolai L. Vasilevski Vertical Toeplitz operators on the upper half-plane and very slowly oscillating functions, Integral Equations Oper. Theory, Volume 77 (2013) no. 2, pp. 149-166 | DOI | MR | Zbl

[15] Raj K. Singh; Ashok Kumar Compact composition operators, J. Aust. Math. Soc., Volume 28 (1979) no. 3, pp. 309-314 | DOI | MR | Zbl

[16] Nikolai L. Vasilevski On Bergman-Toeplitz operators with commutative symbol algebras, Integral Equations Oper. Theory, Volume 34 (1999) no. 1, pp. 107-126 | DOI | MR | Zbl

[17] Nikolai L. Vasilevski Commutative algebras of Toeplitz operators on the Bergman space, Operator Theory: Advances and Applications, 185, Birkhäuser, 2008 | MR | Zbl

[18] Kehe Zhu Analysis on Fock spaces, Graduate Texts in Mathematics, 263, Springer, 2012 | Zbl

[19] Kehe Zhu Towards a dictionary for the Bargmann transform, Handbook of analytic operator theory (Chapman and Hall Handbooks in Mathematics Series), CRC Press, 2019, pp. 319-349 | Zbl

Cited by Sources:

Comments - Politique