In this note we prove a sharp reverse weak estimate for Riesz potentials
where . We also consider the behavior of the best constant of weak type estimate for Riesz potentials, and we prove as .
Accepté le :
Publié le :
Mots clés : Riesz potentials, sharp constant, optimal estimate
Liang Huang 1 ; Hanli Tang 2
@article{CRMATH_2023__361_G7_1123_0, author = {Liang Huang and Hanli Tang}, title = {Optimal weak estimates for {Riesz} potentials}, journal = {Comptes Rendus. Math\'ematique}, pages = {1123--1131}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.479}, language = {en}, }
Liang Huang; Hanli Tang. Optimal weak estimates for Riesz potentials. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1123-1131. doi : 10.5802/crmath.479. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.479/
[1] A note on Riesz potentials, Duke Math. J., Volume 42 (1975), pp. 765-778 | MR | Zbl
[2] The best constant for the centered maximal operator on radial decreasing functions, Math. Inequal. Appl., Volume 14 (2011) no. 1, pp. 173-179 | MR | Zbl
[3] Linear Operators. Part I. General Theory, Wiley Classics Library, John Wiley & Sons, 1988 (reprint of the 1958 original Wiley Classics Library)
[4] A new, rearrangement-free proof of the Sharp Hardy-Littlewood-Sobolev Inequality, Spectral theory, function spaces and inequalities. New techniques and recent trends (Operator Theory: Advances and Applications), Volume 219, Springer, 2012, pp. 55-67 | DOI | MR | Zbl
[5] Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, 2014 | DOI
[6] Some properties of fractional integral I, Math. Z., Volume 27 (1928), pp. 565-606 | DOI | MR
[7] Limiting weak-type behavior for singular integral and maximal operators, Trans. Am. Math. Soc., Volume 358 (2006) no. 5, pp. 1937-1952 | DOI | MR | Zbl
[8] Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math., Volume 118 (1983) no. 2, pp. 349-374 | DOI | MR | Zbl
[9] Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001
[10] Weighted norm inequalities for fractional integrals, Trans. Am. Math. Soc., Volume 192 (1974), pp. 261-274 | DOI | MR | Zbl
[11] L’integrale de Riemann-Liouville et le probleme de Cauchy, Acta Math., Volume 81 (1949), pp. 1-222 | DOI | MR | Zbl
[12] On a theorem in functional analysis, Mat. Sb., N. Ser., Volume 46 (1938), pp. 471-497
[13] Behavior of maximal functions in for large , Ark. Mat., Volume 21 (1983), pp. 259-269 | DOI | MR | Zbl
[14] Limiting weak-type behavior for fractional integral operators, J. Beijing Norm. Univ., Nat. Sci., Volume 52 (2016) no. 1, pp. 5-7 | MR | Zbl
[15] Limiting weak type behavior for multilinear fractional integrals, Nonlinear Anal., Theory Methods Appl., Volume 197 (2020), 111858, 12 pages | MR | Zbl
[16] On a theorem of Marcinkiewicz concerning interpolation of operators, J. Math. Pures Appl., Volume 35 (1956), pp. 223-248 | Zbl
Cité par Sources :
Commentaires - Politique