Let be a non-archimedean locally compact field and let be the group . In this paper we construct a tower of graphs fibred over the one-skeleton of the Bruhat–Tits building of . We prove that a non-spherical and irreducible generic complex representation of can be realized as a quotient of the compactly supported cohomology of the graph for large enough. Moreover, when the representation is cuspidal then it has a unique realization in a such model.
Revised:
Accepted:
Published online:
Anis Rajhi 1, 2
CC-BY 4.0
@article{CRMATH_2023__361_G7_1133_0,
author = {Anis Rajhi},
title = {Compactly supported cohomology of a tower of graphs and generic representations of $\protect \mathrm{PGL}_{n}$ over a local field},
journal = {Comptes Rendus. Math\'ematique},
pages = {1133--1149},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
doi = {10.5802/crmath.485},
language = {en},
}
TY - JOUR
AU - Anis Rajhi
TI - Compactly supported cohomology of a tower of graphs and generic representations of $\protect \mathrm{PGL}_{n}$ over a local field
JO - Comptes Rendus. Mathématique
PY - 2023
SP - 1133
EP - 1149
VL - 361
PB - Académie des sciences, Paris
DO - 10.5802/crmath.485
LA - en
ID - CRMATH_2023__361_G7_1133_0
ER -
%0 Journal Article
%A Anis Rajhi
%T Compactly supported cohomology of a tower of graphs and generic representations of $\protect \mathrm{PGL}_{n}$ over a local field
%J Comptes Rendus. Mathématique
%D 2023
%P 1133-1149
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.485
%G en
%F CRMATH_2023__361_G7_1133_0
Anis Rajhi. Compactly supported cohomology of a tower of graphs and generic representations of $\protect \mathrm{PGL}_{n}$ over a local field. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1133-1149. doi: 10.5802/crmath.485
[1] Buildings. Theory and applications, Graduate Texts in Mathematics, 248, Springer, 2008 | DOI
[2] Representations of the group where is a local non-Archimedean field, Usp. Mat. Nauk, Volume 31 (1976) no. 3(189), pp. 5-70 | MR | Zbl
[3] Cohomologie à supports compacts des immeubles de Bruhat-Tits; applications à la cohomologie des groupes -arithmétiques, C. R. Math. Acad. Sci. Paris, Volume 272 (1971), p. A110-A113 | MR | Zbl
[4] Simplicial complexes lying equivariantly over the affine building of , Math. Ann., Volume 329 (2004) no. 3, pp. 495-511 | DOI | MR | Zbl
[5] Representations of of a local field and harmonic cochains on graphs, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 3, pp. 495-513 | MR | Zbl
[6] Groupes réductifs sur un corps local : I. Données radicielles valuées, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 5-251 | MR | Zbl | DOI | Numdam
[7] Buildings and Classical Groups, Chapman & Hall/CRC, 1997 | DOI
[8] Conducteur des représentations du groupe linéaire, Math. Ann., Volume 256 (1981), pp. 199-214 | DOI
[9] Cohomologie à support compact d’un espace au-dessus de l’immeuble de Bruhat-Tits de sur un corps local. Représentations cuspidales de niveau zéro, Confluentes Math., Volume 10 (2018) no. 1, pp. 95-124 | DOI | MR | Numdam | Zbl
[10] Lectures on buildings, University of Chicago Press, 2009 | MR
Cited by Sources:
Comments - Policy
