Let
Révisé le :
Accepté le :
Publié le :
Ryo Takahashi 1

@article{CRMATH_2023__361_G10_1611_0, author = {Ryo Takahashi}, title = {Remarks on complexities and entropies for singularity categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {1611--1623}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.482}, language = {en}, }
Ryo Takahashi. Remarks on complexities and entropies for singularity categories. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1611-1623. doi : 10.5802/crmath.482. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.482/
[1] Infinite free resolutions, Six lectures on commutative algebra (Progress in Mathematics), Volume 166, Birkhäuser, 2010, pp. 1-118 | Zbl
[2] Homology of perfect complexes, Adv. Math., Volume 223 (2010) no. 5, pp. 1731-1781 | DOI | MR | Zbl
[3] Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, 1998 | DOI | Zbl
[4] Maximal Cohen–Macaulay modules and Tate cohomology, Mathematical Surveys and Monographs, 262, American Mathematical Society, 2021 (with appendices by Luchezar L. Avramov, Benjamin Briggs, Srikanth B. Iyengar and Janina C. Letz) | DOI | Zbl
[5] Burch ideals and Burch rings, Algebra Number Theory, Volume 14 (2020) no. 8, pp. 2121-2150 | MR | Zbl
[6] Dynamical systems and categories, The influence of Solomon Lefschetz in geometry and topology: 50 years of mathematics at CINVESTAV (Contemporary Mathematics), Volume 621, American Mathematical Society, 2014, pp. 133-170 | MR | Zbl
[7] Compact generators in categories of matrix factorizations, Duke Math. J., Volume 159 (2011) no. 2, pp. 223-274 | MR | Zbl
[8] Homological algebra of a complete intersection, with an application to group representations, Trans. Am. Math. Soc., Volume 260 (1980) no. 1, pp. 35-64 | DOI | MR | Zbl
[9] Three notions of dimension for triangulated categories, J. Algebra, Volume 569 (2021), pp. 334-376 | DOI | MR | Zbl
[10] Entropy of an autoequivalence on Calabi-Yau manifolds, Math. Res. Lett., Volume 25 (2018) no. 2, pp. 509-519 | DOI | MR | Zbl
[11] On pseudo-Anosov autoequivalences, Adv. Math., Volume 384 (2021), 107732 | MR | Zbl
[12] Categorical polynomial entropy, Adv. Math., Volume 383 (2021), 107655 | MR | Zbl
[13] Mass growth of objects and categorical entropy, Nagoya Math. J., Volume 244 (2021), pp. 136-157 | DOI | MR | Zbl
[14] Sous les catégories dérivées, . R. Math. Acad. Sci. Paris, Volume 305 (1987) no. 6, pp. 225-228 | Zbl
[15] On entropy for autoequivalences of the derived category of curves, Adv. Math., Volume 308 (2017), pp. 699-712 | DOI | MR | Zbl
[16] Serre dimension and stability conditions, Math. Z., Volume 299 (2021) no. 1, pp. 997-1013 | DOI | MR | Zbl
[17] A note on entropy of auto-equivalences: lower bound and the case of orbifold projective lines, Nagoya Math. J., Volume 238 (2020), pp. 86-103 | DOI | MR | Zbl
[18] On the categorical entropy and the topological entropy, Int. Math. Res. Not., Volume 2019 (2019) no. 2, pp. 457-469 | DOI | MR | Zbl
[19] Entropy in the category of perfect complexes with cohomology of finite length, J. Pure Appl. Algebra, Volume 223 (2019) no. 6, pp. 2585-2597 | DOI | MR | Zbl
[20] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989 (translated from the Japanese by M. Reid) | Zbl
[21] Categorical vs topological entropy of autoequivalences of surfaces, Mosc. Math. J., Volume 21 (2021) no. 2, pp. 401-412 | DOI | MR | Zbl
[22] Triangulated categories, Annals of Mathematics Studies, 148, Princeton University Press, 2001 | DOI | Zbl
[23] Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Tr. Mat. Inst. Steklova, Volume 246 (2004) no. 3, pp. 240-262 translation in Proc. Steklov Inst. Math. 2004, no. 3(246), 227–248 | MR | Zbl
[24] Automorphisms of positive entropy on some hyperKähler manifolds via derived automorphisms of
[25] On entropy of spherical twists, Entropy, Volume 148 (2020) no. 3, pp. 1003-1014 (with an appendix by Arend Bayer) | MR | Zbl
[26] Derived categories and stable equivalence, J. Pure Appl. Algebra, Volume 61 (1989) no. 3, pp. 303-317 | DOI | MR | Zbl
[27] The Poincaré series of stretched Cohen-Macaulay rings, Can. J. Math., Volume 32 (1980) no. 5, pp. 1261-1265 | DOI | MR | Zbl
[28] Reconstruction from Koszul homology and applications to module and derived categories, Pac. J. Math., Volume 268 (2014) no. 1, pp. 231-248 | DOI | MR | Zbl
[29] Cohen–Macaulay modules over Cohen–Macaulay rings, London Mathematical Society Lecture Note Series, 146, Cambridge University Press, 1990 | DOI | Zbl
[30] Categorical entropy for Fourier–Mukai transforms on generic abelian surfaces, J. Algebra, Volume 556 (2020), pp. 448-466 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique