Our aim in this paper is to show that the modulus of smoothness and the -functionals constructed from the Sobolev-type space corresponding to the Dunkl operator are equivalent on the interval .
Revised:
Accepted:
Published online:
Mots clés : Fourier–Dunkl series, Dunkl transform, generalized translation operator, $K$-functionals, modulus of smoothness
Faouaz Saadi 1; Radouan Daher 1
@article{CRMATH_2023__361_G10_1625_0, author = {Faouaz Saadi and Radouan Daher}, title = {Equivalence of {K-functionals} and modulus of smoothness generated by a {Dunkl} type operator on the interval $(-1, 1)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1625--1633}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.517}, language = {en}, }
TY - JOUR AU - Faouaz Saadi AU - Radouan Daher TI - Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$ JO - Comptes Rendus. Mathématique PY - 2023 SP - 1625 EP - 1633 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.517 LA - en ID - CRMATH_2023__361_G10_1625_0 ER -
%0 Journal Article %A Faouaz Saadi %A Radouan Daher %T Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$ %J Comptes Rendus. Mathématique %D 2023 %P 1625-1633 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.517 %G en %F CRMATH_2023__361_G10_1625_0
Faouaz Saadi; Radouan Daher. Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1625-1633. doi : 10.5802/crmath.517. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.517/
[1] Appell-Dunkl sequences and Hurwitz-Dunkl zeta functions, J. Math. Anal. Appl., Volume 520 (2023) no. 1, 126870, 40 pages | MR | Zbl
[2] Equivalence of -functionals and modulus of smoothness constructed by generalized Dunkl translations, Izv. Vyssh. Uchebn. Zaved., Mat., Volume 2008 (2008) no. 8, pp. 3-15 | Zbl
[3] Mean convergence of Fourier–Dunkl series, J. Math. Anal. Appl., Volume 372 (2010) no. 2, pp. 470-485 | DOI | MR | Zbl
[4] A Whittaker-Shannon-Kotel’nikov sampling theorem related to the Dunkl transform, Proc. Am. Math. Soc., Volume 135 (2007) no. 9, pp. 2939-2947 | DOI | Zbl
[5] An uncertainty inequality for Fourier–Dunkl series, J. Comput. Appl. Math., Volume 233 (2010) no. 6, pp. 1499-1504 | DOI | MR | Zbl
[6] Constructive Approximation, Grundlehren der Mathematischen Wissenschaften, 303, Springer, 1993 | DOI
[7] Integral kernels with reflection group invariance, Can. J. Math., Volume 43 (1991) no. 6, pp. 1213-1227 | DOI | MR | Zbl
[8] A differential equation for the zeros of Bessel functions, Appl. Anal., Volume 20 (1985), pp. 269-281 | DOI | MR | Zbl
[9] The Dunkl transform, Invent. Math., Volume 113 (1993) no. 1, pp. 147-162 | DOI | MR | Zbl
[10] Sugli zeri delle funzioni di Bessel, Calcolo, Volume 17 (1980), pp. 211-220 | DOI | Zbl
[11] Harmonic analysis associated with the one-dimensional Dunkl transform, Constr. Approx., Volume 37 (2013) no. 2, pp. 233-281 | MR | Zbl
[12] Bessel harmonic analysis and approximation of functions on the half-line, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 71 (2007) no. 5, pp. 149-196 (in Russian; translated in Izv. Math.) | MR
[13] Generalized Hermite polynomials and the Bose-like oscillator calculus, Nonselfadjoint operators and related topics (Operator Theory: Advances and Applications), Volume 73, Birkhäuser, 1994, pp. 369-396 | DOI | MR | Zbl
[14] Bessel-type signed hypergroups on , Probability measures on groups and related structures. XI (Oberwolfach, 1994), World Scientific, 1994, pp. 292-304 | Zbl
[15] Dunkl operators: Theory and applications, Orthogonal polynomials and special functions (Leuven, 2002) (Lecture Notes in Mathematics), Volume 1817, Springer, 2002, pp. 93-135 | DOI | Zbl
[16] A positive radial product formula for the Dunkl kernel, Trans. Am. Math. Soc., Volume 355 (2003) no. 6, pp. 2413-2438 | DOI | MR | Zbl
[17] Riesz transform and Riesz potentials for Dunkl transform, J. Comput. Appl. Math., Volume 199 (2007) no. 1, pp. 181-195 | DOI | MR | Zbl
[18] A treatise on the theory of Bessel functions, Cambridge University Press; Macmillan, 1948
Cited by Sources:
Comments - Politique