Comptes Rendus
Équations aux dérivées partielles
Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity
[Lois de conservation non locales discontinues et ODE EDO discontinues correspondantes connexes – Existence, unicité, stabilité et régularité]
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1723-1760.

Nous étudions des lois de conservation non locales avec une fonction de flux discontinue de régularité spatiale L () dans la variable spatiale et montrons l’existence et l’unicité de solutions faibles dans C[0,T] ; L loc 1 , ainsi que les principes de maxima connexes des principes de maximum correspondants. Nous obtenons ce caractère bien posé par une reformulation appropriée en termes d’un problème de point fixe. Nous obtenons ce caractère bien posé en reformulant de façon appropriée le problème comme un problème de point fixe. Ce problème de point fixe nécessite lui-même l’étude de l’existence, de l’unicité et de la stabilité d’une classe d’équations différentielles ordinaires discontinues. Au niveau des ODE EDO, nous comparons le type de solution défini ici avec les solutions bien connues de Carathéodory et de Filippov.

We study nonlocal conservation laws with a discontinuous flux function of regularity L () in the spatial variable and show existence and uniqueness of weak solutions in C[0,T] ; L loc 1 , as well as related maximum principles. We achieve this well-posedness by a proper reformulation in terms of a fixed-point problem. This fixed-point problem itself necessitates the study of existence, uniqueness and stability of a class of discontinuous ordinary differential equations. On the ODE level, we compare the solution type defined here with the well-known Carathéodory and Filippov solutions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.490
Classification : 34A12, 34A36, 35L03, 35L65, 35Q99, 35R09, 45K05

Alexander Keimer 1, 2 ; Lukas Pflug 3, 4

1 Institute of Transportation Studies (ITS), University of California, Berkeley, 94720 Berkeley, California, USA
2 Department of Mathematics, FAU Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany
3 Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Competence Center Scientific Computing, Martensstr. 5a, 91058 Erlangen, Germany
4 Department of Mathematics, Chair of Applied Mathematics (Continuous Optimization), Cauerstraße 11, 91058 Erlangen, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G11_1723_0,
     author = {Alexander Keimer and Lukas Pflug},
     title = {Discontinuous nonlocal conservation laws and related discontinuous {ODEs} {\textendash} {Existence,} {Uniqueness,} {Stability} and {Regularity}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1723--1760},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.490},
     language = {en},
}
TY  - JOUR
AU  - Alexander Keimer
AU  - Lukas Pflug
TI  - Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1723
EP  - 1760
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.490
LA  - en
ID  - CRMATH_2023__361_G11_1723_0
ER  - 
%0 Journal Article
%A Alexander Keimer
%A Lukas Pflug
%T Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity
%J Comptes Rendus. Mathématique
%D 2023
%P 1723-1760
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.490
%G en
%F CRMATH_2023__361_G11_1723_0
Alexander Keimer; Lukas Pflug. Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1723-1760. doi : 10.5802/crmath.490. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.490/

[1] Azmy S. Ackleh; Keng Deng Monotone method for first order nonlocal hyperbolic initial-boundary value problems, Appl. Anal., Volume 67 (1997) no. 3, pp. 283-293 | DOI | MR | Zbl

[2] Adimurthi; Shyam Sundar Ghoshal; Rajib Dutta; G. D. Veerappa Gowda Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Commun. Pure Appl. Math., Volume 64 (2011) no. 1, pp. 84-115 | DOI | MR | Zbl

[3] Adimurthi; Jérôme Jaffré; G. D. Veerappa Gowda Godunov-type methods for conservation laws with a flux function discontinuous in space, SIAM J. Numer. Anal., Volume 42 (2004) no. 1, pp. 179-208 | DOI | MR | Zbl

[4] Adimurthi; Siddhartha Mishra; G. D. Veerappa Gowda Optimal entropy solutions for conservation laws with discontinous flux-functions, J. Hyperbolic Differ. Equ., Volume 02 (2005) no. 04, pp. 783-837 | DOI | Zbl

[5] Adimurthi; Siddhartha Mishra; G. D. Veerappa Gowda Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes, Netw. Heterog. Media, Volume 2 (2007) no. 1, pp. 127-157 | DOI | MR | Zbl

[6] Adimurthi; Siddhartha Mishra; G. D. Veerappa Gowda Explicit Hopf–Lax type formulas for Hamilton–Jacobi equations and conservation laws with discontinuous coefficients, J. Differ. Equations, Volume 241 (2007) no. 1, pp. 1-31 | DOI | MR | Zbl

[7] Ravi P. Agarwal; Vangipuram Lakshmikantham Uniqueness and nonuniqueness criteria for ordinary differential equations, 6, World Scientific, 1993

[8] Aekta Aggarwal; Rinaldo M. Colombo; Paola Goatin Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., Volume 53 (2015) no. 2, pp. 963-983 | DOI | MR | Zbl

[9] Luigi Ambrosio Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260 | DOI | MR | Zbl

[10] Luigi Ambrosio; Gianluca Crippa Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Math., Volume 144 (2014) no. 6, pp. 1191-1244 | DOI | MR | Zbl

[11] Paulo Amorim On a nonlocal hyperbolic conservation law arising from a gradient constraint problem, Bull. Braz. Math. Soc. (N.S.), Volume 43 (2012) no. 4, pp. 599-614 | DOI | MR | Zbl

[12] Paulo Amorim; Rinaldo M. Colombo; Andreia Teixeira On the numerical integration of scalar nonlocal conservation laws, ESAIM, Math. Model. Numer. Anal., Volume 49 (2015) no. 1, pp. 19-37 | DOI | Numdam | MR | Zbl

[13] Boris Andreianov; Kenneth H. Karlsen; Nils H. Risebro On vanishing viscosity approximation of conservation laws with discontinuous flux, Netw. Heterog. Media, Volume 5 (2010) no. 3, pp. 617-633 | DOI | MR | Zbl

[14] Boris Andreianov; Kenneth H. Karlsen; Nils H. Risebro A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., Volume 201 (2011) no. 1, pp. 27-86 | DOI | MR | Zbl

[15] Emmanuel Audusse; Benoît Perthame Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. R. Soc. Edinb., Sect. A, Math., Volume 135 (2005) no. 2, pp. 253-265 | DOI | MR | Zbl

[16] Gregory R. Baker; Xiao Li; Anne C. Morlet Analytic structure of two 1D-transport equations with nonlocal fluxes, Physica D, Volume 91 (1996) no. 4, pp. 349-375 | DOI | Zbl

[17] Alexandre Bayen; Jan Friedrich; Alexander Keimer; Lukas Pflug; Tanya Veeravalli Modeling multilane traffic with moving obstacles by nonlocal balance laws, SIAM J. Appl. Dyn. Syst., Volume 21 (2022) no. 2, pp. 1495-1538 | DOI | MR | Zbl

[18] Olivier Besson; Jérôme Pousin Solutions for Linear Conservation Laws with Velocity Fields in L , Arch. Ration. Mech. Anal., Volume 186 (2007) no. 1, pp. 159-175 | DOI | MR | Zbl

[19] Fernando Betancourt; Raimund Bürger; Kenneth H. Karlsen; Elmer M. Tory On nonlocal conservation laws modelling sedimentation, Nonlinearity, Volume 24 (2011) no. 3, p. 855 | DOI | MR | Zbl

[20] Paul Binding The differential equation x ˙=f(x), J. Differ. Equations, Volume 31 (1979) no. 2, pp. 183-199 | DOI | Zbl

[21] Sebastien Blandin; Paola Goatin Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., Volume 132 (2016) no. 2, pp. 217-241 | DOI | MR | Zbl

[22] François Bouchut; François James One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal., Theory Methods Appl., Volume 32 (1998) no. 7, p. 891 | DOI | MR

[23] John M. Bownds A uniqueness theorem for y =f(x,y) using a certain factorization of f, J. Differ. Equations, Volume 7 (1970) no. 2, pp. 227-231 | DOI | MR | Zbl

[24] Alberto Bressan; Wen Shen Uniqueness for discontinuous ODE and conservation laws, Nonlinear Anal., Theory Methods Appl., Volume 34 (1998) no. 5, pp. 637-652 | DOI | MR | Zbl

[25] Alberto Bressan; Wen Shen On traffic flow with nonlocal flux: a relaxation representation, Arch. Ration. Mech. Anal., Volume 237 (2020) no. 3, pp. 1213-1236 | DOI | MR | Zbl

[26] Alberto Bressan; Wen Shen Entropy admissibility of the limit solution for a nonlocal model of traffic flow, Commun. Math. Sci., Volume 19 (2021) no. 5, pp. 1447-1450 | DOI | MR | Zbl

[27] Haim Brezis Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011, xiv+599 pages | DOI

[28] Raimund Bürger; Kenneth H. Karlsen Conservation laws with discontinuous flux: a short introduction, J. Eng. Math., Volume 60 (2008) no. 3-4, pp. 241-247 | DOI | MR | Zbl

[29] Raimund Bürger; Kenneth H. Karlsen; John D. Towers An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., Volume 47 (2009) no. 3, pp. 1684-1712 | DOI | MR | Zbl

[30] Christophe Chalons; Paola Goatin; Luis M. Villada High-Order numerical schemes for one-dimensional nonlocal conservation laws, SIAM J. Sci. Comput., Volume 40 (2018) no. 1, p. A288-A305 | DOI | MR | Zbl

[31] Wenbin Chen; Chang Liu; Zhiqiang Wang Global feedback stabilization for a class of nonlocal transport equations: the continuous and discrete case, SIAM J. Control Optim., Volume 55 (2017) no. 2, pp. 760-784 | DOI | MR | Zbl

[32] Felisia A. Chiarello; Giuseppe M. Coclite Non-local scalar conservation laws with discontinuous flux, Netw. Heterog. Media, Volume 18 (2023) no. 1, pp. 380-398 | DOI

[33] Felisia A. Chiarello; Harold D. Contreras; Luis M. Villada On existence of entropy solutions for 1D nonlocal conservation laws with space discontinuous flux, J. Eng. Math., Volume 141 (2023), 9 | DOI

[34] Felisia Angela Chiarello; Paola Goatin Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM, Math. Model. Numer. Anal., Volume 52 (2018) no. 1, pp. 163-180 | DOI | MR | Zbl

[35] Felisia Angela Chiarello; Paola Goatin Non-local multi-class traffic flow models, Netw. Heterog. Media, Volume 14 (2019) no. 2, pp. 371-387 | DOI | MR | Zbl

[36] Albert Clop; Heikki Jylhä; Joan Mateu; Joan Orobitg Well-posedness for the continuity equation for vector fields with suitable modulus of continuity, J. Funct. Anal., Volume 276 (2019) no. 1, pp. 45-77 | DOI | MR | Zbl

[37] Giuseppe M. Coclite; Jean-Michel Coron; Nicola De Nitti; Alexander Keimer; Lukas Pflug A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 40 (2023) no. 5, pp. 1205-1223 | DOI | MR | Zbl

[38] Giuseppe M. Coclite; Nicola De Nitti; Alexander Keimer; Lukas Pflug On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels, Z. Angew. Math. Phys., Volume 73 (2022) no. 6, 241 | DOI | MR | Zbl

[39] Earl A. Coddington; Norman Levinson Theory of ordinary differential equations, McGill-Hill Book Company, 1955

[40] Maria Colombo; Gianluca Crippa; Elio Marconi; Laura V. Spinolo Local limit of nonlocal traffic models: Convergence results and total variation blow-up, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 5, pp. 1653-1666 | MR | Zbl

[41] Maria Colombo; Gianluca Crippa; Laura V. Spinolo On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ration. Mech. Anal., Volume 233 (2019) no. 3, pp. 1131-1167 | DOI | MR | Zbl

[42] Rinaldo M. Colombo; Mauro Garavello; Magali Lécureux-Mercier A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 4, 1150023, 34 pages | MR | Zbl

[43] Rinaldo M. Colombo; Graziano Guerra Hyperbolic balance laws with a non local source, Commun. Partial Differ. Equations, Volume 32 (2007) no. 12, pp. 1917-1939 | DOI | MR | Zbl

[44] Rinaldo M. Colombo; Magali Lécureux-Mercier Nonlocal crowd dynamics models for several populations, Acta Math. Sci., Ser. B, Engl. Ed., Volume 32 (2012) no. 1, pp. 177-196 | DOI | MR | Zbl

[45] Rinaldo M. Colombo; Francesca Marcellini Nonlocal systems of balance laws in several space dimensions with applications to laser technology, J. Differ. Equations, Volume 259 (2015) no. 11, pp. 6749-6773 | DOI | MR | Zbl

[46] Rinaldo M. Colombo; Elena Rossi Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., Volume 50 (2018) no. 4, pp. 4041-4065 | DOI | MR | Zbl

[47] Jean-Michel Coron; Matthias Kawski; Zhiqiang Wang Analysis of a conservation law modeling a highly re-entrant manufacturing system, Discrete Contin. Dyn. Syst., Ser. B, Volume 14 (2010) no. 4, pp. 1337-1359 | DOI | MR | Zbl

[48] Jean-Michel Coron; Alexander Keimer; Lukas Pflug Nonlocal transport equations – existence and uniqueness of solutions and relation to the corresponding conservation laws, SIAM J. Math. Anal., Volume 52 (2020) no. 6, pp. 5500-5532 | DOI | MR | Zbl

[49] Jean-Michel Coron; Zhiqiang Wang Controllability for a scalar conservation law with nonlocal velocity, J. Differ. Equations, Volume 252 (2012) no. 1, pp. 181-201 | DOI | MR | Zbl

[50] Jean-Michel Coron; Zhiqiang Wang Output feedback stabilization for a scalar conservation law with a nonlocal velocity, SIAM J. Math. Anal., Volume 45 (2013) no. 5, pp. 2646-2665 | DOI | MR | Zbl

[51] Gianluca Crippa Lagrangian flows and the one-dimensional Peano phenomenon for ODEs, J. Differ. Equations, Volume 250 (2011) no. 7, pp. 3135-3149 | DOI | MR | Zbl

[52] Gianluca Crippa; Magali Lécureux-Mercier Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, NoDEA, Nonlinear Differ. Equ. Appl., Volume 20 (2013) no. 3, pp. 523-537 | DOI | MR | Zbl

[53] Cristiana De Filippis; Paola Goatin The initial–boundary value problem for general non-local scalar conservation laws in one space dimension, Nonlinear Anal., Theory Methods Appl., Volume 161 (2017), pp. 131-156 | DOI | MR | Zbl

[54] Marco Di Francesco; Simone Fagioli; Emanuela Radici Deterministic particle approximation for nonlocal transport equations with nonlinear mobility, J. Differ. Equations, Volume 266 (2019) no. 5, pp. 2830-2868 | DOI | MR | Zbl

[55] Ronald J. DiPerna; Pierre-Louis Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | MR

[56] Alexey F. Filippov Differential equations with discontinuous right-hand side, Mat. Sb., Volume 93 (1960) no. 1, pp. 99-128 | MR | Zbl

[57] Alexey F. Filippov Differential Equations with Discontinuous Righthand Sides, Springer, 1988 | DOI

[58] Ulrik S. Fjordholm Sharp uniqueness conditions for one-dimensional, autonomous ordinary differential equations, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 9, pp. 916-921 | DOI | Numdam | MR | Zbl

[59] Gerald B. Folland Real analysis. Modern techniques and their applications, Pure and Applied Mathematics, John Wiley & Sons, 1999, xvi+386 pages

[60] Jan Friedrich; Oliver Kolb Maximum principle satisfying CWENO schemes for nonlocal conservation laws, SIAM J. Sci. Comput., Volume 41 (2019) no. 2, p. A973-A988 | DOI | MR | Zbl

[61] Mauro Garavello; Roberto Nataline; Benedetto Piccoli; Andrea Terracina Conservation laws with discontinuous flux, Netw. Heterog. Media, Volume 2 (2007) no. 1, p. 159 | DOI | MR | Zbl

[62] Tore Gimse Conservation laws with discontinuous flux functions, SIAM J. Math. Anal., Volume 24 (1993) no. 2, pp. 279-289 | DOI | MR | Zbl

[63] Paola Goatin; Elena Rossi Well-posedness of IBVP for 1D scalar non-local conservation laws, Z. Angew. Math. Mech., Volume 99 (2019) no. 11, e201800318 | MR

[64] Paola Goatin; Sheila Scialanga Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, Volume 11 (2016) no. 1, pp. 107-121 | DOI | MR | Zbl

[65] Xiaoqian Gong; Matthias Kawski Weak Measure-Valued Solutions of a Nonlinear Hyperbolic Conservation Law, SIAM J. Math. Anal., Volume 53 (2021) no. 4, pp. 4417-4444 | DOI | MR | Zbl

[66] B. D. Greenshields; J. R. Bibbins; W. S. Channing; H. H. Miller A study of traffic capacity, Highway research board proceedings, Volume 1935, National Research Council (USA), Highway Research Board (1935)

[67] Michael Gröschel; Alexander Keimer; Günter Leugering; Zhiqiang Wang Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, SIAM J. Control Optim., Volume 52 (2014) no. 4, pp. 2141-2163 | DOI | MR | Zbl

[68] Martin Gugat; Alexander Keimer; Günter Leugering; Zhiqiang Wang Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, Netw. Heterog. Media, Volume 10 (2015) no. 4, pp. 749-785 | DOI | MR | Zbl

[69] Shouchuan Hu Differential equations with discontinuous right-hand sides, J. Math. Anal. Appl., Volume 154 (1991) no. 2, pp. 377-390 | MR | Zbl

[70] Iasson Karafyllis; Dionysios Theodosis; Markos Papageorgiou Analysis and control of a non-local PDE traffic flow model, Int. J. Control, Volume 95 (2022) no. 3, pp. 660-678 | DOI | MR | Zbl

[71] Kenneth H. Karlsen; Christian Klingenberg; Nils H. Risebro A relaxation scheme for conservation laws with a discontinuous coefficient, Math. Comput., Volume 73 (2004) no. 247, pp. 1235-1259 | DOI | MR | Zbl

[72] Kenneth H. Karlsen; John D. Towers Convergence of the Lax–Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux, Chin. Ann. Math., Ser. B, Volume 25 (2004) no. 03, pp. 287-318 | DOI | Zbl

[73] Alexander Keimer; Günter Leugering; Tanmay Sarkar Analysis of a system of nonlocal balance laws with weighted work in progress, J. Hyperbolic Differ. Equ., Volume 15 (2018) no. 3, pp. 375-406 | DOI | MR | Zbl

[74] Alexander Keimer; Lukas Pflug Existence, uniqueness and regularity results on nonlocal balance laws, J. Differ. Equations, Volume 263 (2017), pp. 4023-4069 | DOI | MR | Zbl

[75] Alexander Keimer; Lukas Pflug On approximation of local conservation laws by nonlocal conservation laws, J. Math. Anal. Appl., Volume 475 (2019) no. 2, pp. 1927-1955 | DOI | MR | Zbl

[76] Alexander Keimer; Lukas Pflug; Michele Spinola Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, J. Math. Anal. Appl., Volume 466 (2018) no. 1, pp. 18-55 | DOI | MR | Zbl

[77] Alexander Keimer; Lukas Pflug; Michele Spinola Nonlocal balance laws: Theory of convergence for nondissipative numerical schemes (2018) (submitted)

[78] Alexander Keimer; Lukas Pflug; Michele Spinola Nonlocal scalar conservation laws on bounded domains and applications in traffic flow, SIAM J. Math. Anal., Volume 50 (2018) no. 6, pp. 6271-6306 | DOI | MR | Zbl

[79] Alexander Keimer; Lukas Pflug; Michele Spinola Nonlocal scalar conservation laws on bounded domains and applications in traffic flow, SIAM J. Math. Anal., Volume 50 (2018) no. 6, pp. 6271-6306 | DOI | MR | Zbl

[80] Alexander Keimer; Manish Singh; Tanya Veeravalli Existence and uniqueness results for a class of nonlocal conservation laws by means of a Lax–Hopf-type solution formula, J. Hyperbolic Differ. Equ., Volume 17 (2020) no. 4, pp. 677-705 | DOI | MR | Zbl

[81] Runhild Aae Klausen; Nils H. Risebro Stability of conservation laws with discontinuous coefficients, J. Differ. Equations, Volume 157 (1999) no. 1, pp. 41-60 | DOI | MR | Zbl

[82] Christian Klingenberg; Nils H. Risebro Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior, Commun. Partial Differ. Equations, Volume 20 (1995) no. 11-12, pp. 1959-1990 | DOI | MR | Zbl

[83] Peter E. Kloeden; Thomas Lorenz Nonlocal multi-scale traffic flow models: analysis beyond vector spaces, Bull. Math. Sci., Volume 6 (2016) no. 3, pp. 453-514 | DOI | MR | Zbl

[84] Wilhelm Kutta Beitrag zur näherungsweisen Integration totaler Differentialgleichungen, Zeitschr. f. Math., Volume 46 (1901), pp. 435-453 | Zbl

[85] Yongki Lee Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux, J. Differ. Equations, Volume 266 (2019) no. 1, pp. 580-599 | MR | Zbl

[86] Giovanni Leoni A first course in Sobolev spaces, Graduate Studies in Mathematics, 105, American Mathematical Society, 2009, xvi+607 pages

[87] Dong Li; Tong Li Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Netw. Heterog. Media, Volume 6 (2011) no. 4, pp. 681-694 | MR | Zbl

[88] Michael J. Lighthill; Gerald B. Whitham On kinematic waves. I. Flood movement in long rivers, Proc. R. Soc. Lond., Ser. A, Volume 229 (1955) no. 1178, pp. 281-316 | MR | Zbl

[89] Michael J. Lighthill; Gerald B. Whitham On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond., Ser. A, Volume 229 (1955) no. 1178, pp. 317-345 | MR | Zbl

[90] Dong Ngoduy; R. E. Wilson Multianticipative nonlocal macroscopic traffic model, Comput.-Aided Civil Infrastruct. Eng., Volume 29 (2014) no. 4, pp. 248-263 | DOI

[91] William F. Osgood Beweis der Existenz einer Lösung der Differentialgleichung dy dx=f(x,y) ohne Hinzunahme der Cauchy-Lipschitz’schen Bedingung, Monatsh. f. Math., Volume 9 (1898) no. 1, pp. 331-345 | DOI | Zbl

[92] Daniel N. Ostrov Solutions of Hamilton–Jacobi equations and scalar conservation laws with discontinuous space–time dependence, J. Differ. Equations, Volume 182 (2002) no. 1, pp. 51-77 | DOI | MR | Zbl

[93] Guergana Petrova; Bojan Popov Linear transport equations with discontinuous coefficients, Commun. Partial Differ. Equations, Volume 24 (1999) no. 9-10, pp. 1849-1873 | DOI | MR | Zbl

[94] Benedetto Piccoli; Francesco Rossi Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Appl. Math., Volume 124 (2013) no. 1, pp. 73-105 | DOI | MR | Zbl

[95] Paul I. Richards Shock waves on the highway, Oper. Res., Volume 4 (1956) no. 1, pp. 42-51 | DOI | MR | Zbl

[96] Johanna Ridder; Wen Shen Traveling waves for nonlocal models of traffic flow, Discrete Contin. Dyn. Syst., Ser. A, Volume 39 (2019), pp. 4001-4040 | DOI | MR | Zbl

[97] Carl Runge Über die numerische Auflösung totaler Differentialgleichungen, Math. Ann., Volume 46 (1895) no. 2, pp. 167-178 | DOI | MR

[98] Peipei Shang; Zhiqiang Wang Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system, J. Differ. Equations, Volume 250 (2011) no. 2, pp. 949-982 | DOI | MR | Zbl

[99] John D. Towers Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., Volume 38 (2000) no. 2, pp. 681-698 | DOI | MR | Zbl

[100] John D. Towers A difference scheme for conservation laws with a discontinuous flux: the nonconvex case, SIAM J. Numer. Anal., Volume 39 (2001) no. 4, pp. 1197-1218 | DOI | MR | Zbl

[101] Wolfgang Walter Differential and Integral Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, 55, Springer, 1970 | DOI

[102] Eberhard Zeidler Applied functional analysis. Applications to mathematical physics, Applied Mathematical Sciences, 108, Springer, 1995

[103] Kevin Zumbrun On a nonlocal dispersive equation modeling particle suspensions, Q. Appl. Math., Volume 57 (1999) no. 3, pp. 573-600 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique