We establish the full range of the Caffarelli–Kohn–Nirenberg inequalities for radial functions in the Sobolev and the fractional Sobolev spaces of order . In particular, we show that the range of the parameters for radial functions is strictly larger than the one without symmetric assumption. Previous known results reveal only some special ranges of parameters even in the case . The known proofs used the Riesz potential and inequalities for fractional integrations. Our proof is new, elementary, and is based on one-dimensional case. Applications on compact embeddings are also mentioned.
Révisé le :
Accepté le :
Publié le :
Mots clés : Caffarelli–Kohn–Nirenberg inequality, radial functions, compact embedding
Arka Mallick 1 ; Hoai-Minh Nguyen 2
@article{CRMATH_2023__361_G7_1175_0, author = {Arka Mallick and Hoai-Minh Nguyen}, title = {The {Caffarelli{\textendash}Kohn{\textendash}Nirenberg} inequalities for radial functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1175--1189}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.503}, language = {en}, }
Arka Mallick; Hoai-Minh Nguyen. The Caffarelli–Kohn–Nirenberg inequalities for radial functions. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1175-1189. doi : 10.5802/crmath.503. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.503/
[1] Caffarelli–Kohn–Nirenberg type inequalities of fractional order with applications, J. Funct. Anal., Volume 272 (2017) no. 10, pp. 3998-4029 | DOI | MR | Zbl
[2] Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems, Math. Ann., Volume 360 (2014) no. 3-4, pp. 653-673 | DOI | MR | Zbl
[3] Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces, Trans. Am. Math. Soc., Volume 370 (2018) no. 11, pp. 8285-8310 | DOI | MR | Zbl
[4] Sharp lower bounds for Coulomb energy, Math. Res. Lett., Volume 23 (2016) no. 3, pp. 621-632 | DOI | MR | Zbl
[5] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983) no. 4, pp. 313-345 | DOI | MR | Zbl
[6] Another look at Sobolev spaces, Optimal control and partial differential equations, IOS Press, 2001, pp. 439-455 | Zbl
[7] A new characterization of Sobolev spaces, C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 2, pp. 75-80 | DOI | Numdam | MR | Zbl
[8] How to recognize constant functions. A connections with Sobolev spaces, Usp. Mat. Nauk, Volume 57 (2002), pp. 59-74 | MR
[9] Non-local functionals related to the total variation and connections with image processing, Ann. PDE, Volume 4 (2018) no. 1, 9, 77 pages | MR | Zbl
[10] A surprising formula for Sobolev norms, Proc. Natl. Acad. Sci. USA, Volume 118 (2021) no. 8, e2025254118 | MR
[11] Partial regularity of suitable weak solutions of the Navier-Stokes equations, Pure Appl. Math., Volume 35 (1982) no. 6, pp. 771-831 | DOI | MR | Zbl
[12] First order interpolation inequalities with weights, Compos. Math., Volume 53 (1984) no. 3, pp. 259-275 | Numdam | MR | Zbl
[13] On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Pure Appl. Math., Volume 54 (2001) no. 2, pp. 229-258 | DOI | MR | Zbl
[14] On the best constant for a weighted Sobolev-Hardy inequality, J. Lond. Math. Soc., Volume 48 (1993) no. 1, pp. 137-151 | DOI | MR | Zbl
[15] Improved Caffarelli–Kohn–Nirenberg and trace inequalities for radial functions, Commun. Pure Appl. Anal., Volume 11 (2012) no. 5, pp. 1629-1642 | MR | Zbl
[16] Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type, J. Differ. Equations, Volume 191 (2003) no. 1, pp. 121-142 | DOI | MR | Zbl
[17] Non-linear ground state representations and sharp hardy inequalities, J. Funct. Anal., Volume 255 (2008) no. 12, pp. 3407-3430 | DOI | MR | Zbl
[18] Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies Appl. Math., Volume 57 (1977), pp. 93-105 | DOI | Zbl
[19] Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., Volume 49 (1982) no. 3, pp. 315-334 | DOI | Zbl
[20] Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities associated with Coulomb–Sobolev spaces, J. Funct. Anal., Volume 283 (2022) no. 10, 109662, 33 pages | MR | Zbl
[21] On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002) no. 2, pp. 230-238 | MR
[22] Some new characterizations of Sobolev spaces, J. Funct. Anal., Volume 237 (2006) no. 2, pp. 689-720 | DOI | MR | Zbl
[23] Some inequalities related to Sobolev norms, Calc. Var. Partial Differ. Equ., Volume 41 (2011) no. 3-4, pp. 483-509 | DOI | MR | Zbl
[24] Fractional Caffarelli–Kohn–Nirenberg inequalities, J. Funct. Anal., Volume 274 (2018) no. 9, pp. 2661-2672 | DOI | MR | Zbl
[25] On Hardy and Caffarelli-Kohn-Nirenberg inequalities, J. Anal. Math., Volume 139 (2019) no. 2, pp. 773-797 | DOI | MR | Zbl
[26] One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions, Mat. Zametki, Volume 34 (1983) no. 4, pp. 521-533 | MR | Zbl
[27] Radial subspaces of Besov and Lizorkin–Triebel classes: extended Strauss lemma and compactness of embeddings, J. Fourier Anal. Appl., Volume 6 (2000) no. 6, pp. 639-662 | DOI | MR | Zbl
[28] Existence of solitary waves in higher dimensions, Commun. Math. Phys., Volume 55 (1977) no. 2, pp. 149-162 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique