We establish the full range of the Caffarelli–Kohn–Nirenberg inequalities for radial functions in the Sobolev and the fractional Sobolev spaces of order
Révisé le :
Accepté le :
Publié le :
Mots-clés : Caffarelli–Kohn–Nirenberg inequality, radial functions, compact embedding
Arka Mallick 1 ; Hoai-Minh Nguyen 2

@article{CRMATH_2023__361_G7_1175_0, author = {Arka Mallick and Hoai-Minh Nguyen}, title = {The {Caffarelli{\textendash}Kohn{\textendash}Nirenberg} inequalities for radial functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1175--1189}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.503}, language = {en}, }
Arka Mallick; Hoai-Minh Nguyen. The Caffarelli–Kohn–Nirenberg inequalities for radial functions. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1175-1189. doi : 10.5802/crmath.503. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.503/
[1] Caffarelli–Kohn–Nirenberg type inequalities of fractional order with applications, J. Funct. Anal., Volume 272 (2017) no. 10, pp. 3998-4029 | DOI | MR | Zbl
[2] Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems, Math. Ann., Volume 360 (2014) no. 3-4, pp. 653-673 | DOI | MR | Zbl
[3] Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces, Trans. Am. Math. Soc., Volume 370 (2018) no. 11, pp. 8285-8310 | DOI | MR | Zbl
[4] Sharp lower bounds for Coulomb energy, Math. Res. Lett., Volume 23 (2016) no. 3, pp. 621-632 | DOI | MR | Zbl
[5] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983) no. 4, pp. 313-345 | DOI | MR | Zbl
[6] Another look at Sobolev spaces, Optimal control and partial differential equations, IOS Press, 2001, pp. 439-455 | Zbl
[7] A new characterization of Sobolev spaces, C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 2, pp. 75-80 | DOI | Numdam | MR | Zbl
[8] How to recognize constant functions. A connections with Sobolev spaces, Usp. Mat. Nauk, Volume 57 (2002), pp. 59-74 | MR
[9] Non-local functionals related to the total variation and connections with image processing, Ann. PDE, Volume 4 (2018) no. 1, 9, 77 pages | MR | Zbl
[10] A surprising formula for Sobolev norms, Proc. Natl. Acad. Sci. USA, Volume 118 (2021) no. 8, e2025254118 | MR
[11] Partial regularity of suitable weak solutions of the Navier-Stokes equations, Pure Appl. Math., Volume 35 (1982) no. 6, pp. 771-831 | DOI | MR | Zbl
[12] First order interpolation inequalities with weights, Compos. Math., Volume 53 (1984) no. 3, pp. 259-275 | Numdam | MR | Zbl
[13] On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Pure Appl. Math., Volume 54 (2001) no. 2, pp. 229-258 | DOI | MR | Zbl
[14] On the best constant for a weighted Sobolev-Hardy inequality, J. Lond. Math. Soc., Volume 48 (1993) no. 1, pp. 137-151 | DOI | MR | Zbl
[15] Improved Caffarelli–Kohn–Nirenberg and trace inequalities for radial functions, Commun. Pure Appl. Anal., Volume 11 (2012) no. 5, pp. 1629-1642 | MR | Zbl
[16] Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type, J. Differ. Equations, Volume 191 (2003) no. 1, pp. 121-142 | DOI | MR | Zbl
[17] Non-linear ground state representations and sharp hardy inequalities, J. Funct. Anal., Volume 255 (2008) no. 12, pp. 3407-3430 | DOI | MR | Zbl
[18] Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies Appl. Math., Volume 57 (1977), pp. 93-105 | DOI | Zbl
[19] Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., Volume 49 (1982) no. 3, pp. 315-334 | DOI | Zbl
[20] Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities associated with Coulomb–Sobolev spaces, J. Funct. Anal., Volume 283 (2022) no. 10, 109662, 33 pages | MR | Zbl
[21] On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002) no. 2, pp. 230-238 | MR
[22] Some new characterizations of Sobolev spaces, J. Funct. Anal., Volume 237 (2006) no. 2, pp. 689-720 | DOI | MR | Zbl
[23] Some inequalities related to Sobolev norms, Calc. Var. Partial Differ. Equ., Volume 41 (2011) no. 3-4, pp. 483-509 | DOI | MR | Zbl
[24] Fractional Caffarelli–Kohn–Nirenberg inequalities, J. Funct. Anal., Volume 274 (2018) no. 9, pp. 2661-2672 | DOI | MR | Zbl
[25] On Hardy and Caffarelli-Kohn-Nirenberg inequalities, J. Anal. Math., Volume 139 (2019) no. 2, pp. 773-797 | DOI | MR | Zbl
[26] One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions, Mat. Zametki, Volume 34 (1983) no. 4, pp. 521-533 | MR | Zbl
[27] Radial subspaces of Besov and Lizorkin–Triebel classes: extended Strauss lemma and compactness of embeddings, J. Fourier Anal. Appl., Volume 6 (2000) no. 6, pp. 639-662 | DOI | MR | Zbl
[28] Existence of solitary waves in higher dimensions, Commun. Math. Phys., Volume 55 (1977) no. 2, pp. 149-162 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique