This article deals with abstract linear time invariant controlled systems of parabolic type. In [9], with A. Benabdallah, we introduced the block moment method for scalar control operators. The principal aim of this method is to compute the minimal time needed to drive an initial condition (or a space of initial conditions) to zero, in particular in the case when spectral condensation occurs. The purpose of the present article is to push forward the analysis to deal with any admissible control operator. The considered setting leads to applications to one dimensional parabolic-type equations or coupled systems of such equations.
With such admissible control operator, the characterization of the minimal null control time is obtained thanks to the resolution of an auxiliary vectorial block moment problem (i.e. set in the control space) followed by a constrained optimization procedure of the cost of this resolution. This leads to essentially sharp estimates on the resolution of the block moment problems which are uniform with respect to the spectrum of the evolution operator in a certain class. This uniformity allows the study of uniform controllability for various parameter dependent problems. We also deduce estimates on the cost of controllability when the final time goes to the minimal null control time.
We illustrate how the method works on a few examples of such abstract controlled systems and then we deal with actual coupled systems of one dimensional parabolic partial differential equations. Our strategy enables us to tackle controllability issues that seem out of reach by existing techniques.
On étudie dans cet article des systèmes de contrôle paraboliques autonomes linéaires abstraits. Dans [9], avec A. Benabdallah, nous avons introduit la méthode des moments par blocs dans le cas d’un opérateur de contrôle scalaire. Le but principal de cette méthode est de permettre de calculer le temps minimal nécessaire pour amener à zéro une donnée initiale fixée (ou un espace de données initiales), en particulier dans le cas où des phénomènes de condensation spectrale sont présents. Le but du présent travail est d’approfondir cette analyse pour prendre en compte n’importe quel opérateur de contrôle admissible. Le cadre proposé permet des applications à des équations ou systèmes paraboliques couplés en dimension un d’espace.
Pour de tels opérateurs de contrôle admissibles, la caractérisation du temps minimal de contrôle est obtenu à l’aide de la résolution de problèmes de moment vectoriels auxiliaires suivie d’une procédure d’optimisation sous contrainte du coût de cette résolution. Cela amène à des estimations essentiellement optimales pour la résolution de ces problèmes de moment par bloc qui, de surcroît, sont uniformes par rapport au spectre de l’opérateur d’évolution à l’intérieur d’une certaine classe. Ce caractère uniforme permet de prouver la contrôlabilité uniforme de divers systèmes dépendant de paramètres. Nous déduisons également des estimations du coût de contrôlabilité quand le temps de contrôle est proche du temps minimal.
Nous illustrons le fonctionnement de cette méthode sur quelques exemples de tels systèmes abstraits mais également sur des exemples plus concrets de systèmes d’équations aux dérivées partielles paraboliques contrôlés en dimension 1. Notre stratégie permet d’étudier des propriétés de contrôlabilité qui semblent hors de portée par les méthodes existantes de la littérature.
Accepted:
Published online:
Franck Boyer 1; Morgan Morancey 2
@article{CRMATH_2023__361_G8_1191_0, author = {Franck Boyer and Morgan Morancey}, title = {Analysis of non scalar control problems for parabolic systems by the block moment method}, journal = {Comptes Rendus. Math\'ematique}, pages = {1191--1248}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.487}, language = {en}, }
TY - JOUR AU - Franck Boyer AU - Morgan Morancey TI - Analysis of non scalar control problems for parabolic systems by the block moment method JO - Comptes Rendus. Mathématique PY - 2023 SP - 1191 EP - 1248 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.487 LA - en ID - CRMATH_2023__361_G8_1191_0 ER -
Franck Boyer; Morgan Morancey. Analysis of non scalar control problems for parabolic systems by the block moment method. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1191-1248. doi : 10.5802/crmath.487. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.487/
[1] Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries, Math. Control Relat. Fields, Volume 10 (2020) no. 2, pp. 217-256 | DOI | MR | Zbl
[2] Spectral analysis of discrete elliptic operators and applications in control theory, Numer. Math., Volume 140 (2018) no. 4, pp. 857-911 | DOI | MR | Zbl
[3] Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method, J. Evol. Equ., Volume 21 (2021) no. 4, pp. 4799-4843 | DOI | MR | Zbl
[4] Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, Volume 1 (2011) no. 3, pp. 267-306 | DOI | MR | Zbl
[5] Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences, J. Funct. Anal., Volume 267 (2014) no. 7, pp. 2077-2151 | DOI | MR | Zbl
[6] New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence, J. Math. Anal. Appl., Volume 444 (2016) no. 2, pp. 1071-1113 | DOI | MR | Zbl
[7] Unexpected quadratic behaviors for the small-time local null controllability of scalar-input parabolic equations, J. Math. Pures Appl., Volume 136 (2020), pp. 22-91 | DOI | MR | Zbl
[8] Sharp Estimates of the One-Dimensional Boundary Control Cost for Parabolic Systems and Application to the -Dimensional Boundary Null Controllability in Cylindrical Domains, SIAM J. Control Optim., Volume 52 (2014) no. 5, pp. 2970-3001 | DOI | MR | Zbl
[9] A block moment method to handle spectral condensation phenomenon in parabolic control problems, Ann. Henri Lebesgue, Volume 3 (2020), pp. 717-793 | DOI | Numdam | MR | Zbl
[10] On the controllability of linear parabolic equations with an arbitrary control location for stratified media, C. R. Math. Acad. Sci. Paris, Volume 344 (2007) no. 6, pp. 357-362 | DOI | Numdam | MR | Zbl
[11] Boundary null-controllability of coupled parabolic systems with Robin conditions, Evol. Equ. Control Theory, Volume 10 (2021) no. 1, pp. 61-102 | DOI | MR | Zbl
[12] Controllability of linear parabolic equations and systems, 2023 (lecture notes, https://hal.archives-ouvertes.fr/hal-02470625v4)
[13] Distributed null-controllability of some 1D cascade parabolic systems (2023) (in preparation) | HAL
[14] Boundary null-controllability of some multi-dimensional linear parabolic systems by the moment method (to appear in Ann. Inst. Fourier) | HAL
[15] Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients, Math. Control Relat. Fields, Volume 4 (2014) no. 3, pp. 263-287 | DOI | MR | Zbl
[16] Exact controllability to eigensolutions of the bilinear heat equation on compact networks, Discrete Contin. Dyn. Syst., Ser. S, Volume 15 (2022) no. 6, pp. 1377-1401 | DOI | MR | Zbl
[17] The cost of controlling weakly degenerate parabolic equations by boundary controls, Math. Control Relat. Fields, Volume 7 (2017) no. 2, pp. 171-211 | DOI | MR | Zbl
[18] The cost of controlling strongly degenerate parabolic equations, ESAIM, Control Optim. Calc. Var., Volume 26 (2020), 2, 50 pages | DOI | MR
[19] Precise estimates for biorthogonal families under asymptotic gap conditions, Discrete Contin. Dyn. Syst., Ser. S, Volume 13 (2020) no. 5, pp. 1441-1472 | DOI | MR | Zbl
[20] Some remarks on complete controllability, SIAM J. Control, Volume 4 (1966), pp. 686-694 | DOI | MR | Zbl
[21] Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 272-292 | DOI | MR | Zbl
[22] Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Q. Appl. Math., Volume 32 (1974/75), pp. 45-69 | DOI | MR | Zbl
[23] Sharp estimates for biorthogonal families to exponential functions associated to complex sequences without gap conditions, Evol. Equ. Control Theory (2023) (early access) | DOI
[24] Controllability results for cascade systems of coupled parabolic PDEs by one control force, Port. Math., Volume 67 (2010) no. 1, pp. 91-113 | DOI | MR | Zbl
[25] Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., Volume 21 (1983) no. 1, pp. 68-85 | DOI | MR | Zbl
[26] On uniform controllability of 1D transport equations in the vanishing viscosity limit, C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 265-312 | DOI | MR | Zbl
[27] On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM, Control Optim. Calc. Var., Volume 18 (2012) no. 3, pp. 712-747 | DOI | Numdam | MR | Zbl
[28] Contrôle exact de l’équation de la chaleur, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1-2, pp. 335-356 | DOI | MR
[29] The cost of the control in the case of a minimal time of control: the example of the one-dimensional heat equation, J. Math. Anal. Appl., Volume 451 (2017) no. 1, pp. 497-507 | DOI | MR
[30] Single input controllability of a simplified fluid-structure interaction model, ESAIM, Control Optim. Calc. Var., Volume 19 (2013) no. 1, pp. 20-42 | DOI | Numdam | MR | Zbl
[31] Minimal controllability time for the heat equation under unilateral state or control constraints, Math. Models Methods Appl. Sci., Volume 27 (2017) no. 9, pp. 1587-1644 | DOI | MR | Zbl
[32] Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 19 (2002) no. 5, pp. 543-580 | DOI | Numdam | MR
[33] A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst., Ser. B, Volume 14 (2010) no. 4, pp. 1465-1485 | DOI | MR | Zbl
[34] Boundary approximate controllability of some linear parabolic systems, Evol. Equ. Control Theory, Volume 3 (2014) no. 1, pp. 167-189 | DOI | MR | Zbl
[35] Contrôlabilité de quelques systèmes paraboliques, Ph. D. Thesis, Aix-Marseille Université (2020) (https://www.theses.fr/2020AIXM0133)
[36] Étude des sommes d’exponentielles réelles, Actualités Scientifiques et Industrielles, 959, Hermann, 1943, 89 pages | MR
[37] Two results on exact boundary control of parabolic equations, Appl. Math. Optim., Volume 11 (1984) no. 2, pp. 145-152 | DOI | MR | Zbl
[38] Observation and control for operator semigroups, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2009, xii+483 pages | DOI | MR
Cited by Sources:
Comments - Policy