The last decade has seen an abundance of congruences for , the number of -regular partitions of . Notably absent are congruences modulo for . In this paper, we introduce Ramanujan type congruences modulo for involving some primes congruent to modulo .
Révisé le :
Accepté le :
Publié le :
Mots clés : partitions, regular partitions, congruences
Cristina Ballantine 1 ; Mircea Merca 2, 3
@article{CRMATH_2023__361_G9_1577_0, author = {Cristina Ballantine and Mircea Merca}, title = {Congruences modulo $4$ for the number of $3$-regular partitions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1577--1583}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.512}, language = {en}, }
Cristina Ballantine; Mircea Merca. Congruences modulo $4$ for the number of $3$-regular partitions. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1577-1583. doi : 10.5802/crmath.512. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.512/
[1] The Theory of Partitions, Cambridge Mathematical Library, Cambridge University Press, 1998 | Zbl
[2] Parity of -regular partition numbers and Diophantine equations (2022) | arXiv
[3] Infinite families of infinite families of congruences for -regular partitions, Ramanujan J., Volume 33 (2014) no. 3, pp. 329-337 | DOI | MR | Zbl
[4] Arithmetic properties of -regular partitions, Adv. Appl. Math., Volume 51 (2013) no. 4, pp. 507-523 | MR | Zbl
[5] -Divisibility of -regular partition functions, Ramanujan J., Volume 19 (2009) no. 1, pp. 63-70 | DOI | MR | Zbl
[6] Congruences for -regular partition functions modulo , Ramanujan J., Volume 27 (2012) no. 1, pp. 101-108 | DOI | MR | Zbl
[7] Elementary proofs of parity results for -regular partitions, Bull. Aust. Math. Soc., Volume 81 (2010) no. 1, pp. 58-63 | DOI | MR | Zbl
[8] Congruences for -regular partitions modulo , Integers, Volume 15A (2015), A11, 12 pages | MR | Zbl
[9] Parity of the coefficients of certain eta-quotients, J. Number Theory, Volume 235 (2022), pp. 275-304 | DOI | MR | Zbl
[10] -regular partitions and a modular surface, -series with applications to combinatorics, number theory, and physics (Contemporary Mathematics), Volume 291, American Mathematical Society, 2001, pp. 177-182 | MR | Zbl
[11] The -regular partition function modulo , J. Number Theory, Volume 94 (2002) no. 2, pp. 320-325 | DOI | MR | Zbl
[12] Arithmetic of -regular partition functions, Int. J. Number Theory, Volume 4 (2008) no. 2, pp. 295-302 | DOI | MR | Zbl
[13] An algorithmic approach to Ramanujan’s congruences, Ramanujan J., Volume 20 (2009) no. 2, pp. 215-251 | DOI | MR | Zbl
[14] Congruence properties modulo 5 and 7 for the pod function, Int. J. Number Theory, Volume 7 (2011) no. 8, pp. 2249-2259 | DOI | MR | Zbl
[15] Congruence properties of the partition functions and , Årbok Univ. Bergen, Mat.-Naturv. Ser., Volume 1969 no. 13, 27 pages | MR | Zbl
[16] Arithmetic properties of -regular bipartitions, Bull. Aust. Math. Soc., Volume 95 (2017) no. 3, pp. 353-364 | DOI | MR | Zbl
[17] Congruences for -regular partitions modulo powers of , Ramanujan J., Volume 44 (2017) no. 2, pp. 343-358 | DOI | MR | Zbl
[18] Arithmetic properties of -regular partitions, Ramanujan J., Volume 47 (2018) no. 1, pp. 99-115 | DOI | MR | Zbl
[19] Arithmetic of the -regular partition function modulo , Ramanujan J., Volume 25 (2011), pp. 49-56 | DOI | MR | Zbl
[20] Congruences for some -regular partitions modulo , J. Number Theory, Volume 152 (2015), pp. 105-117 | MR | Zbl
[21] New Ramanujan-like congruences modulo powers of and for overpartitions, J. Number Theory, Volume 133 (2013) no. 6, pp. 1932-1949 | MR | Zbl
[22] Parity results for -regular partitions, Ramanujan J., Volume 34 (2014) no. 1, pp. 109-117 | MR | Zbl
[23] New parity results for -regular partitions, Quaest. Math., Volume 46 (2023) no. 3, pp. 465-471 | MR | Zbl
Cité par Sources :
Commentaires - Politique