Comptes Rendus
Théorie des groupes
Congruences associated with families of nilpotent subgroups and a theorem of Hirsch
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1585-1592.

Our main result associates a family of congruences with each suitable system of nilpotent subgroups of a finite group. Using this result, we complete and correct the proof of a theorem of Hirsch concerning the class number of a finite group of odd order.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.514
Classification : 20D20, 20D60
Mots clés : Nilpotent systems of subgroups, congruences

Stefanos Aivazidis 1 ; Thomas Müller 2

1 Department of Mathematics & Applied Mathematics, University of Crete, Greece
2 Department of Mathematics, University of Vienna, Austria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G9_1585_0,
     author = {Stefanos Aivazidis and Thomas M\"uller},
     title = {Congruences associated with families of nilpotent subgroups and a theorem of {Hirsch}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1585--1592},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.514},
     language = {en},
}
TY  - JOUR
AU  - Stefanos Aivazidis
AU  - Thomas Müller
TI  - Congruences associated with families of nilpotent subgroups and a theorem of Hirsch
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1585
EP  - 1592
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.514
LA  - en
ID  - CRMATH_2023__361_G9_1585_0
ER  - 
%0 Journal Article
%A Stefanos Aivazidis
%A Thomas Müller
%T Congruences associated with families of nilpotent subgroups and a theorem of Hirsch
%J Comptes Rendus. Mathématique
%D 2023
%P 1585-1592
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.514
%G en
%F CRMATH_2023__361_G9_1585_0
Stefanos Aivazidis; Thomas Müller. Congruences associated with families of nilpotent subgroups and a theorem of Hirsch. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1585-1592. doi : 10.5802/crmath.514. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.514/

[1] William Burnside Theory of Groups of Finite Order, Dover Publications, 1955 | MR

[2] Lynne M. Butler A unimodality result in the enumeration of subgroups of a finite abelian group, Proc. Am. Math. Soc., Volume 101 (1987) no. 4, pp. 771-775 | DOI | MR | Zbl

[3] Jean Delsarte Fonctions de Möbius sur les groupes abeliens finis, Ann. Math., Volume 49 (1948), pp. 600-609 | DOI | Zbl

[4] Walter Feit; John G. Thompson Solvability of groups of odd order, Order, Volume 13 (1963), pp. 775-1029 | MR | Zbl

[5] Philip Hall A note on soluble groups, J. Lond. Math. Soc., Volume 3 (1928), pp. 98-105 | DOI | MR | Zbl

[6] Philip Hall The eulerian functions of a group, Q. J. Math., Oxf. Ser., Volume 7 (1936), pp. 134-151 | DOI

[7] Kurt A. Hirsch On a theorem of Burnside, Q. J. Math., Volume 1 (1950), pp. 97-99 | DOI | MR | Zbl

[8] John Poland Two problems of finite groups with k conjugate classes, J. Aust. Math. Soc., Volume 8 (1968), pp. 49-55 | DOI | MR | Zbl

[9] Helmut Wielandt Zum Satz von Sylow, Math. Z., Volume 60 (1954), pp. 407-408 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique