We build the plethora of counterexamples to bi-parameter two weight embedding theorems. Two weight one parameter embedding results (which is the same as results of boundedness of two weight classical paraproducts, or two weight Carleson embedding theorems) are well known since the works of Sawyer in the 80’s. Bi-parameter case was considered by S. Y. A. Chang and R. Fefferman but only when underlying measure is Lebesgue measure. The embedding of holomorphic functions on bi-disc requires general input measure. In [9] we classified such embeddings if the output measure has tensor structure. In this note we give examples that without tensor structure requirement all results break down.
Dans le présent article, nous construisons une pléthore de contre-exemples aux théorèmes de plongements à deux poids et à deux paramètres. Les résultats de plongement à un paramètre et à deux poids (qui sont la même chose que les résultats de paraproduits bornés classiques à deux poids) sont bien connus depuis les travaux de Sawyer dans les années 80. S. Y. A. Chang et R. Fefferman ont examiné le cas des deux paramètres, mais uniquement lorsque la mesure sous-jacente est la mesure de Lebesgue. Le plongement de fonctions holomorphes sur le bi-disque nécessite une mesure générale en entrée. Dans [9], nous avons classé ces plongements lorsque la mesure obtenu en sortie a une structure tensorielle. Dans cette note, nous donnons des contre-exemples d’après lesquels tous les résultats deviennent faux en l’absence d’hypothèse d’une structure tensorielle.
Revised:
Accepted:
Published online:
Pavel Mozolyako 1; Georgios Psaromiligkos 1; Alexander Volberg 1
@article{CRMATH_2020__358_5_529_0, author = {Pavel Mozolyako and Georgios Psaromiligkos and Alexander Volberg}, title = {Counterexamples for multi-parameter weighted paraproducts}, journal = {Comptes Rendus. Math\'ematique}, pages = {529--534}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {5}, year = {2020}, doi = {10.5802/crmath.52}, language = {en}, }
TY - JOUR AU - Pavel Mozolyako AU - Georgios Psaromiligkos AU - Alexander Volberg TI - Counterexamples for multi-parameter weighted paraproducts JO - Comptes Rendus. Mathématique PY - 2020 SP - 529 EP - 534 VL - 358 IS - 5 PB - Académie des sciences, Paris DO - 10.5802/crmath.52 LA - en ID - CRMATH_2020__358_5_529_0 ER -
Pavel Mozolyako; Georgios Psaromiligkos; Alexander Volberg. Counterexamples for multi-parameter weighted paraproducts. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 529-534. doi : 10.5802/crmath.52. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.52/
[1] Bi-parameter Carleson embeddings with product weights (2019) (https://arxiv.org/abs/1906.11150)
[2] A counter example for measures bounded on for the bi-disc, Report, 7, Institut Mittag-Leffler, 1974
[3] Carleson measure on the bi-disc, Ann. Math., Volume 109 (1979) no. 3, pp. 613-620 | DOI | MR | Zbl
[4] A continuous version of duality of with on the bidisc, Ann. Math., Volume 112 (1980) no. 1, pp. 179-201 | DOI | MR | Zbl
[5] Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothnes, Nonlinear Anal., Theory Methods Appl., Volume 101 (2014), pp. 98-112 | DOI | Zbl
[6] Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Société Mathématique de France, 1978 | Numdam | Zbl
[7] Banach-valued multilinear singular integrals, Indiana Univ. Math. J., Volume 67 (2018) no. 5, pp. 1711-1763 | DOI | MR | Zbl
[8] Paraproducts in one and several parameters, Forum Math., Volume 19 (2007) no. 2, pp. 325-351 | MR | Zbl
[9] Combinatorial property of all positive measures in dimensions and , 2020 (preprint)
[10] Bi-parameter paraproducts, Acta Math., Volume 193 (2004), pp. 269-296 | DOI | MR | Zbl
[11] Multi-parameter paraproducts, Rev. Mat. Iberoam., Volume 22 (2006) no. 3, pp. 963-976 | DOI | MR | Zbl
[12] Coifman–Meyer multipliers: Leibniz-type rules and applications to scattering of solutions to PDEs, Trans. Am. Math. Soc., Volume 372 (2019) no. 8, pp. 5453-5481 | DOI | MR | Zbl
[13] The Bellman functions and two-weight inequalities for Haar multipliers, J. Am. Math. Soc., Volume 12 (1999), pp. 909-928 | DOI | MR | Zbl
[14] Weighted inequalities for the two-dimensional Hardy operator, Stud. Math., Volume 82 (1985) no. 1, pp. 1-16 | DOI | MR
[15] Dyadic product , , and Carleson’s counterexample, 1999 (http://www.math.ucla.edu/tao/preprints/Expository/product.dvi)
Cited by Sources:
Comments - Policy