Comptes Rendus
Functional analysis
Separation ratios of maps between Banach spaces
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1663-1672.

Under the weak assumption on a Banach space E that EE embeds isomorphically into E, we provide a characterisation of when a Banach space X coarsely embeds into E via a single numerical invariant.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.522
Classification: 46B80
Keywords: Coarse embeddings, Banach spaces

Christian Rosendal 1

1 Department of Mathematics University of Maryland, 4176 Campus Drive - William E. Kirwan Hall, College Park, MD 20742-4015, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G10_1663_0,
     author = {Christian Rosendal},
     title = {Separation ratios of maps between {Banach} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1663--1672},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.522},
     language = {en},
}
TY  - JOUR
AU  - Christian Rosendal
TI  - Separation ratios of maps between Banach spaces
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1663
EP  - 1672
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.522
LA  - en
ID  - CRMATH_2023__361_G10_1663_0
ER  - 
%0 Journal Article
%A Christian Rosendal
%T Separation ratios of maps between Banach spaces
%J Comptes Rendus. Mathématique
%D 2023
%P 1663-1672
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.522
%G en
%F CRMATH_2023__361_G10_1663_0
Christian Rosendal. Separation ratios of maps between Banach spaces. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1663-1672. doi : 10.5802/crmath.522. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.522/

[1] Florent Baudier Barycentric gluing and geometry of stable metrics, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 116 (2022) no. 1, 37, 48 pages | MR | Zbl

[2] Florent Baudier; Gilles Lancien; Thomas Schlumprecht The coarse geometry of Tsirelson’s space and applications, J. Am. Math. Soc., Volume 31 (2018) no. 3, pp. 699-717 | DOI | MR | Zbl

[3] Bruno Braga Coarse and uniform embeddings, J. Funct. Anal., Volume 272 (2017) no. 5, pp. 1852-1875 | DOI | MR | Zbl

[4] Bruno Braga On weaker notions of nonlinear embeddings between Banach spaces, J. Funct. Anal., Volume 274 (2018) no. 11, pp. 3149-3169 | DOI | MR | Zbl

[5] Peter G. Casazza; Thaddeus J. Shura Tsirelson’s Space, Lecture Notes in Mathematics, 1363, Springer, 1989 | DOI

[6] Tadeusz Figiel; William B. Johnson A uniformly convex Banach space which contains no p , Compos. Math., Volume 29 (1974), pp. 179-190 | MR

[7] Manor Mendel; Assaf Naor Metric Cotype, Ann. Math., Volume 168 (2008) no. 1, pp. 247-298 | DOI | MR | Zbl

[8] Assaf Naor Uniform nonextendability from nets, C. R. Acad. Sci. Paris, Volume 353 (2015) no. 11, pp. 991-994 | DOI | Numdam | MR | Zbl

[9] Christian Rosendal Equivariant geometry of Banach spaces and topological groups, Forum Math. Sigma, Volume 5 (2017), e22, 62 pages | MR | Zbl

[10] Christian Rosendal Geometries of topological groups, Bull. Am. Math. Soc., Volume 60 (2023) no. 4, pp. 539-568 | DOI | MR | Zbl

[11] Christian Rosendal On Uniform and Coarse Rigidity of L p ([0,1]), Stud. Math., Volume 268 (2023) no. 2, pp. 235-240 | DOI | MR | Zbl

[12] Boris S. Tsirel’son It is impossible to imbed l p or c 0 into an arbitrary Banach space, Funkts. Anal. Prilozh., Volume 8 (1974), pp. 57-60 | MR

Cited by Sources:

Comments - Policy