[Sur les projections orthogonales de boules symplectiques]
Nous étudions les projections orthogonales de boules symplectiques dans
We study the orthogonal projections of symplectic balls in
Accepté le :
Publié le :
Mots-clés : boule symplectique, projection orthogonale, théorème de non-plongement de Gromov
Nuno C. Dias 1, 2 ; Maurice A. de Gosson 3 ; João N. Prata 1, 2

@article{CRMATH_2024__362_G3_217_0, author = {Nuno C. Dias and Maurice A. de Gosson and Jo\~ao N. Prata}, title = {On {Orthogonal} {Projections} of {Symplectic} {Balls}}, journal = {Comptes Rendus. Math\'ematique}, pages = {217--227}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.542}, language = {en}, }
Nuno C. Dias; Maurice A. de Gosson; João N. Prata. On Orthogonal Projections of Symplectic Balls. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 217-227. doi : 10.5802/crmath.542. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.542/
[1] On the local systolic optimality of Zoll contact forms, Geom. Funct. Anal., Volume 33 (2023), pp. 299-363 | DOI | MR | Zbl
[2] Sharp systolic inequalities for Reeb flows on the three-sphere, Invent. Math., Volume 211 (2018) no. 2, pp. 687-778 | DOI | MR | Zbl
[3] How large is the shadow of a symplectic ball?, J. Topol. Anal., Volume 5 (2013) no. 1, pp. 87-119 | DOI | MR
[4] Geometric measure theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer, 1969
[5] Symplectic geometry and quantum mechanics, Operator Theory: Advances and Applications, 166, Springer, 2006 | DOI
[6] Symplectic methods in harmonic analysis and in mathematical physics, Pseudo-Differential Operators. Theory and Applications, 7, Springer, 2011
[7] On Density Operators with Gaussian Weyl Symbols, Proceedings to the Conference MLTFA18 – Microlocal and Time-Frequency Analysis (Applied and Numerical Harmonic Analysis), Birkhäuser, 2018, pp. 191-206 | Zbl
[8] Pseudo holomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985), pp. 307-347 | DOI | MR | Zbl
[9] Symplectic embeddings of polydisks, Invent. Math., Volume 172 (2008) no. 3, pp. 477-489 | DOI | MR
[10] Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts, Birkhäuser, 1994 | DOI
[11] Gaussian entanglement revisited, New J. Phys., Volume 20 (2018), 023030
[12] Symplectic embedding problems, old and new, Bull. Am. Math. Soc., Volume 55 (2018) no. 2, pp. 139-182 | DOI | MR
[13] Gaussian-Wigner distributions in quantum mechanics and optics, Phys. Rev. A, Volume 36 (1987) no. 8, 3868, pp. 3868-3880 | DOI | MR
[14] Bound Entangled Gaussian States, Phys. Rev. Lett., Volume 86 (2001) no. 16, 3658, pp. 3658-3661 | DOI
[15] The Schur Complement and its Applications (Fuzhen Zhang, ed.), Numerical Methods and Algorithms, 4, Springer, 2005 | DOI
Cité par Sources :
Commentaires - Politique