[Stabilité asymptotique non linéaire
In this note, we show nonlinear stability in
Dans cette note, nous montrons la stabilité non linéaire
Révisé le :
Accepté le :
Publié le :
William Golding 1

@article{CRMATH_2024__362_G6_581_0, author = {William Golding}, title = {Nonlinear asymptotic stability in $L^\infty $ for {Lipschitz} solutions to scalar conservation laws}, journal = {Comptes Rendus. Math\'ematique}, pages = {581--592}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.553}, language = {en}, }
TY - JOUR AU - William Golding TI - Nonlinear asymptotic stability in $L^\infty $ for Lipschitz solutions to scalar conservation laws JO - Comptes Rendus. Mathématique PY - 2024 SP - 581 EP - 592 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.553 LA - en ID - CRMATH_2024__362_G6_581_0 ER -
William Golding. Nonlinear asymptotic stability in $L^\infty $ for Lipschitz solutions to scalar conservation laws. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 581-592. doi : 10.5802/crmath.553. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.553/
[1] Decay of entropy solutions of nonlinear conservation laws, Arch. Ration. Mech. Anal., Volume 146 (1999) no. 2, pp. 95-127 | DOI | MR | Zbl
[2] Regularizing effect of nonlinearity in multidimensional scalar conservation laws, Transport equations and multi-D hyperbolic conservation laws (F. Ancona; S. Bianchini; R. M. Colombo; C. De Lellis; A. Marson; A. Montanari, eds.) (Lecture Notes of the Unione Matematica Italiana), Volume 5, Springer, 2008, pp. 77-128 | DOI | Zbl
[3] Long time behavior of periodic solutions to scalar conservation laws in several space dimensions, SIAM J. Math. Anal., Volume 45 (2013) no. 4, pp. 2064-2070 | DOI | MR | Zbl
[4] Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, 325, Springer, 2016 | DOI | MR | Zbl
[5] The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., Volume 70 (1979) no. 2, pp. 167-179 | DOI | MR | Zbl
[6] Regularity and large time behaviour of solutions of a conservation law without convexity, Proc. R. Soc. Edinb., Sect. A, Math., Volume 99 (1985) no. 3-4, pp. 201-239 | DOI | MR | Zbl
[7] Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., Volume 3 (1957) no. 3, pp. 25-43 | MR | Zbl
[8] Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., Volume 28 (1979) no. 1, pp. 137-188 | DOI | MR | Zbl
[9] Structure of Entropy Solutions for Multi-Dimensional Scalar Conservation Laws, Arch. Ration. Mech. Anal., Volume 170 (2003) no. 2, pp. 137-184 | DOI | MR | Zbl
[10] Long time behavior in scalar conservation laws, Differ. Integral Equ., Volume 22 (2009) no. 3-4 | MR | Zbl
[11] Large time behavior and homogenization of solutions of two-dimensional conservation laws, Commun. Pure Appl. Math., Volume 46 (1993) no. 1, pp. 1-26 | DOI | MR | Zbl
[12] Unconditional regularity and trace results for the isentropic Euler equations with
[13] The sharp form of Oleinik’ s entropy condition in several space variables, Trans. Am. Math. Soc., Volume 276 (1983) no. 2, pp. 707-714 | DOI | MR | Zbl
[14] On the spreading of characteristics for non-convex conservation laws, Proc. R. Soc. Edinb., Sect. A, Math., Volume 131 (2001) no. 4, pp. 909-925 | DOI | MR | Zbl
[15] First order quasilinear equations in several independent variables, Math. USSR, Sb., Volume 10 (1970) no. 2, pp. 217-243 | DOI | Zbl
[16] Hyperbolic systems of conservation laws. II, Commun. Pure Appl. Math., Volume 10 (1957), pp. 537-566 | DOI | MR | Zbl
[17] A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Am. Math. Soc., Volume 7 (1994) no. 1, pp. 169-191 | DOI | Zbl
[18] Discontinuous solutions of nonlinear differential equations, Transl., Ser. 2, Am. Math. Soc., Volume 26 (1963), pp. 95-172 | DOI | MR | Zbl
[19] On decay of periodic entropy solutions to a scalar conservation law, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) no. 6, pp. 997-1007 | DOI | Numdam | MR | Zbl
[20] Long-time stability in systems of conservation laws, using relative entropy/energy, Arch. Ration. Mech. Anal., Volume 219 (2016), pp. 679-699 | DOI | MR | Zbl
[21] Divergence-free positive symmetric tensors and fluid dynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1209-1234 | DOI | Numdam | MR | Zbl
[22] Compensated integrability. Applications to the Vlasov-Poisson equation and other models in mathematical physics, J. Math. Pures Appl., Volume 127 (2019), pp. 67-88 | DOI | MR | Zbl
[23] Oscillation properties of scalar conservation laws, Commun. Pure Appl. Math., Volume 72 (2019) no. 6, pp. 1321-1348 | DOI | MR | Zbl
[24] Multi-dimensional Burgers equation with unbounded initial data: well-posedness and dispersive estimates, Arch. Ration. Mech. Anal., Volume 234 (2019) no. 3, pp. 1391-1411 | DOI | MR | Zbl
[25] Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot–Watt Symposium, Vol. IV (Pitman Research Notes in Mathematics Series), Volume 39, Pitman, 1979, pp. 136-212 | Zbl
[26] Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Commun. Pure Appl. Math., Volume 60 (2007), pp. 1488-1521 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique