Motivated by viewing categories as bimodule monoids over their isomorphism groupoids, we construct monoidal structures called plethysm products on three levels: that is for bimodules, relative bimodules and factorizable bimodules. For the bimodules we work in the general setting of actions by categories. We give a comprehensive theory linking these levels to each other as well as to Grothendieck element constructions, indexed enrichments, decorations and algebras.
Specializing to groupoid actions leads to applications including the plus construction. In this setting, the third level encompasses the known constructions of Baez–Dolan and its generalizations, as we prove. One new result is that the plus construction can also be realized as an element construction compatible with monoidal structures that we define. This allows us to prove a commutativity between element and plus constructions, a special case of which was announced earlier. Specializing the results on the third level yields a criterion for when a definition of operad–like structure as a plethysm monoid —as exemplified by operads— is possible.
En considérant les catégories comme des monoïdes bimodules sur leurs groupoïdes d’isomorphisme, nous construisons des structures monoïdales appelées produits de pléthysme à trois niveaux : c’est-à-dire pour les bimodules, les bimodules relatifs et les bimodules factorisables.
Pour les bimodules, nous travaillons dans le cadre général des actions par catégories. Nous donnons une théorie complète reliant ces niveaux entre eux ainsi qu’aux constructions d’éléments de Grothendieck, aux enrichissements indexés, décorations et algèbres.
La spécialisation dans les actions de groupoïdes conduit à des applications telles que la construction plus.
Dans ce cadre, le troisième niveau englobe les constructions connues de Baez–Dolan et ses généralisations, comme nous le prouvons. Un nouveau résultat est que la construction plus peut aussi être réalisée comme une construction d’éléments compatible avec les structures monoïdales que nous définissons. Cela nous permet de prouver une commutativité entre les constructions d’éléments et les constructions plus, dont un cas particulier a été annoncé précédemment. En spécialisant les résultats du troisième niveau, nous obtenons un critère pour savoir quand une définition d’une structure de type opérade en tant que monoïde pléthysmique (comme illustré par les opérades) est possible.
Accepted:
Published online:
Ralph M. Kaufmann 1; Michael Monaco 2

@article{CRMATH_2024__362_G4_357_0, author = {Ralph M. Kaufmann and Michael Monaco}, title = {Plethysm {Products,} {Element{\textendash}} and {Plus} {Constructions}}, journal = {Comptes Rendus. Math\'ematique}, pages = {357--411}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.557}, language = {en}, }
Ralph M. Kaufmann; Michael Monaco. Plethysm Products, Element– and Plus Constructions. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 357-411. doi : 10.5802/crmath.557. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.557/
[1] Higher-dimensional algebra. III. -categories and the algebra of opetopes, Adv. Math., Volume 135 (1998) no. 2, pp. 145-206 | DOI | MR
[2] Regular patterns, substitudes, Feynman categories and operads, Theory Appl. Categ., Volume 33 (2018), pp. 148-192 | MR | Zbl
[3] Operadic categories as a natural environment for Koszul duality (2018) | arXiv
[4] Labelled cospan categories and properads (2022) | arXiv
[5] Introduction to bicategories, Reports of the Midwest Category Seminar, Springer (1967), pp. 1-77 | Zbl
[6] Moment categories and operads (2021) | arXiv
[7] Comprehensive factorisation systems, Tbil. Math. J., Volume 10 (2017) no. 3, pp. 255-277 | DOI | MR
[8] Trees, graphs and aggregates: a categorical perspective on combinatorial surface topology, geometry, and algebra (2022) | arXiv
[9] Homotopy-everything -spaces, Bull. Am. Math. Soc., Volume 74 (1968), pp. 1117-1122 | DOI | MR | Zbl
[10] Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, 347, Springer, 1973, x+257 pages | DOI | MR
[11] Generalized operads and their inner cohomomorphisms, Geometry and dynamics of groups and spaces (Progress in Mathematics), Volume 265, Birkhäuser, 2008, pp. 247-308 | DOI | MR | Zbl
[12] The A-infinity operad and the moduli space of curves (2004) | arXiv
[13] Operads revisited, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progress in Mathematics), Volume 269, Birkhäuser, 2009, pp. 675-698 | DOI | MR | Zbl
[14] Modular operads, Compos. Math., Volume 110 (1998) no. 1, pp. 65-126 | DOI | MR | Zbl
[15] Revêtements étales et groupe fondamental, SGA 1 (1960-61), Lecture Notes in Mathematics, 224, Springer, 1971, xxii+447 pages | DOI
[16] Une théorie combinatoire des séries formelles, Adv. Math., Volume 42 (1981) no. 1, pp. 1-82 | DOI
[17] Moduli space actions on the Hochschild co-chains of a Frobenius algebra. II. Correlators, J. Noncommut. Geom., Volume 2 (2008) no. 3, pp. 283-332 | DOI | MR
[18] Feynman categories and Representation Theory (2019) (to appear Commun. Contemp. Math.) | arXiv
[19] Decorated Feynman categories, J. Noncommut. Geom., Volume 11 (2017) no. 4, pp. 1437-1464 | DOI | MR
[20] Plus constructions, plethysm, and unique factorization categories with applications to graphs and operad-like theories (2022) | arXiv
[21] Feynman Categories, Astérisque, 387, 2017, vii+161 pages | MR
[22] Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, 64, Cambridge University Press, 1982, 245 pages | MR
[23] Polynomial functors and opetopes, Adv. Math., Volume 224 (2010) no. 6, pp. 2690-2737 | DOI | MR | Zbl
[24] The theory of group characters and matrix representations of groups, AMS Chelsea Publishing, 2006, viii+314 pages Reprint of the second (1950) edition | DOI | MR
[25] Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer, 1998, xii+314 pages | MR
[26] Operads and PROPs, Handbook of algebra. Vol. 5, Volume 5, Elsevier/North-Holland, 2008, pp. 87-140 | DOI | MR | Zbl
[27] Operads in algebra, topology and physics, Mathematical Surveys and Monographs, 96, American Mathematical Society, 2002, x+349 pages | MR
[28] The geometry of iterated loop spaces, Lecture Notes in Mathematics, 271, Springer, 1972, viii+175 pages | MR
[29] Calculations for Plus Constructions (2022) | arXiv
[30] The operad structure of admissible -covers, Algebra Number Theory, Volume 7 (2013) no. 8, pp. 1953-1975 | DOI | MR | Zbl
[31] Homotopy theory of coalgebras, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 49 (1985) no. 6, p. 1302-1321, 1343 | MR
[32] The surface category and tropical curves (2021) | arXiv
[33] A Koszul duality for PROPs, Trans. Am. Math. Soc., Volume 359 (2007) no. 10, pp. 4865-4943 | DOI | MR
Cited by Sources:
Comments - Policy