Comptes Rendus
Research article - Algebra, Algebraic geometry
Translational and great Darboux cyclides
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 413-448.

A surface that is the pointwise sum of circles in Euclidean space is either coplanar or contains no more than 2 circles through a general point. A surface that is the pointwise product of circles in the unit-quaternions contains either 2, 3, 4, or 5 circles through a general point. A surface in a unit-sphere of any dimension that contains 2 great circles through a general point contains either 4, 5, 6, or infinitely many circles through a general point. These are some corollaries from our classification of translational and great Darboux cyclides. We use the combinatorics associated to the set of low degree curves on such surfaces modulo numerical equivalence.

Une surface qui est la somme ponctuelle de cercles dans l’espace euclidien est soit coplanaire, soit ne contient pas plus de 2 cercles passant par un point général. Une surface qui est le produit ponctuel de cercles dans les quaternions unitaires contient soit 2, 3, 4, ou 5 cercles passant par un point général. Une surface dans une sphère unitaire de n’importe quelle dimension qui contient 2 grands cercles passant par un point général contient soit 4, 5, 6, ou une infinité de cercles passant par un point général. Ce sont quelques corollaires de notre classification des cyclides de translation et des cyclides de Darboux. Nous utilisons la combinatoire associée à l’ensemble des courbes de faible degré sur de telles surfaces modulo l’équivalence numérique.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.603
Classification: 51B10, 51M15, 14J17, 14C20
Keywords: real surfaces, pencils of circles, singular locus, Darboux cyclides, Clifford torus, Möbius geometry, elliptic geometry, hyperbolic geometry, Euclidean geometry, Euclidean translations, Clifford translations, unit quaternions, weak del Pezzo surfaces, divisor classes, Néron–Severi lattice
Mots-clés : surfaces réelles, faisceaux de cercles, lieu singulier, cyclides de Darboux, tore de Clifford, géométrie de Möbius, géométrie elliptique, géométrie hyperbolique, géométrie euclidienne, translations euclidiennes, translations de Clifford, quaternions unitaires, surfaces de del Pezzo faibles, classes de diviseurs, réseau de Néron–Severi

Niels Lubbes 1

1 Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Austria
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G4_413_0,
     author = {Niels Lubbes},
     title = {Translational and great {Darboux} cyclides},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {413--448},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.603},
     language = {en},
}
TY  - JOUR
AU  - Niels Lubbes
TI  - Translational and great Darboux cyclides
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 413
EP  - 448
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.603
LA  - en
ID  - CRMATH_2024__362_G4_413_0
ER  - 
%0 Journal Article
%A Niels Lubbes
%T Translational and great Darboux cyclides
%J Comptes Rendus. Mathématique
%D 2024
%P 413-448
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.603
%G en
%F CRMATH_2024__362_G4_413_0
Niels Lubbes. Translational and great Darboux cyclides. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 413-448. doi : 10.5802/crmath.603. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.603/

[1] Bohumír Bastl; Bert Jüttler; Miroslav Lávička; Tino Schulz; Zbyněk Šír On the parameterization of rational ringed surfaces and rational canal surfaces, Math. Comput. Sci., Volume 8 (2014) no. 2, pp. 299-319 | DOI | MR

[2] Richard Blum Circles on surfaces in the Euclidean 3-space, Geometry and differential geometry (Proc. Conf., Univ. Haifa, 1979) (Lecture Notes in Mathematics), Volume 792, Springer, 1980, pp. 213-221 | DOI | MR

[3] Julian Coolidge A Treatise on the Circle and Sphere, Oxford University Press, 1916, 603 pages | MR

[4] H. S. M. Coxeter Non-Euclidean geometry, Spectrum, MAA, 1998, xviii+336 pages | DOI | MR

[5] Gaston Darboux Sur le contact des coniques et des surfaces, C. R. Acad. Sci. Paris (1880) no. 91, pp. 969-971

[6] Igor V. Dolgachev Classical algebraic geometry: A modern view, Cambridge University Press, 2012, xii+639 pages | DOI | MR

[7] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR

[8] Thomas Ivey Surfaces with orthogonal families of circles, Proc. Am. Math. Soc., Volume 123 (1995) no. 3, pp. 865-872 | DOI | MR

[9] F. Klein Nicht-Euklidische Geometrie, II, Vorlesung, Göttingen, 1893

[10] János Kollár Lectures on resolution of singularities, 166, Princeton University Press, 2007, vi+208 pages | MR

[11] Rimvydas Krasauskas; Severinas Zubė Rational Bezier formulas with quaternion and Clifford algebra weights, SAGA - Advances in ShApes, Geometry, and Algebra, Geometry and Computing, Volume 10 (2014), pp. 147-166 | DOI

[12] E. E. Kummer Über die Flächen vierten Grades, auf welchen Schaaren von Kegelschnitten liegen, J. Reine Angew. Math., Volume 64 (1863) no. 11, pp. 66-76 | MR

[13] P. C. López-Custodio; J. Dai Design of a Variable-Mobility Linkage Using the Bohemian Dome, J. Mech. Des., Volume 141 (2019) no. 9, 092303, 12 pages

[14] Niels Lubbes Orbital. Sage library for constructing and visualizing curves on surfaces, 2017 (https://github.com/niels-lubbes/orbital)

[15] Niels Lubbes Surfaces that are covered by two pencils of circles, Math. Z., Volume 299 (2021) no. 3-4, pp. 1445-1472 | DOI | MR

[16] Niels Lubbes Cyclides, 2023 (https://github.com/niels-lubbes/cyclides)

[17] Niels Lubbes; Josef Schicho Kinematic generation of Darboux cyclides, Comput.-Aided Geom. Des., Volume 64 (2018), pp. 11-14 | DOI | MR

[18] Egor Morozov Surfaces containing two isotropic circles through each point, Comput.-Aided Geom. Des., Volume 90 (2021), 102035, 15 pages | MR

[19] Martin Peternell Generalized Dupin Cyclides with Rational Lines of Curvature, Curves and surfaces (Lecture Notes in Computer Science), Volume 6920, Springer, 2012, pp. 543-552 | DOI

[20] H. Pottmann; A. Asperl; M. Hofer; A. Kilian Architectural Geometry, Bentley Institute Press, 2007, 724 pages

[21] Helmut Pottmann; Ling Shi; Mikhail Skopenkov Darboux cyclides and webs from circles, Comput.-Aided Geom. Des., Volume 29 (2012) no. 1, pp. 77-97 | DOI | MR

[22] The Sage Development Team Sage Mathematics Software (2012) (https://www.sagemath.org)

[23] Josef Schicho The multiple conical surfaces, Beitr. Algebra Geom., Volume 42 (2001) no. 1, pp. 71-87 | MR

[24] Jean-Pierre Serre Topics in Galois theory, Jones and Bartlett Publishers, 1992, xvi+117 pages | MR

[25] Johannes Siegele; Daniel F. Scharler; Hans-Peter Schröcker Rational motions with generic trajectories of low degree, Comput.-Aided Geom. Des., Volume 76 (2020), 101793, 10 pages | MR

[26] Robert Silhol Real algebraic surfaces, Lecture Notes in Mathematics, 1392, Springer, 1989, x+215 pages | DOI | MR

[27] Mikhail Skopenkov; Rimvydas Krasauskas Surfaces containing two circles through each point, Math. Ann., Volume 373 (2018) no. 3–4, pp. 1299-1327 | MR

[28] Nobuko Takeuchi Cyclides, Hokkaido Math. J., Volume 29 (2000) no. 1, pp. 119-148 | MR

[29] Frank Uhlig A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil, Linear Algebra Appl., Volume 14 (1976), pp. 189-209 | DOI | MR | Zbl

[30] Yvon Villarceau Théorème sur le tore, Nouv. Ann. Math., Volume 7 (1848), pp. 345-347 (https://eudml.org/doc/95880)

[31] Mingyang Zhao; Xiaohong Jia; Changhe Tu; Bernard Mourrain; Wenping Wang Enumerating the morphologies of non-degenerate Darboux cyclides, Comput.-Aided Geom. Des., Volume 75 (2019), 101776, 15 pages | MR

Cited by Sources:

Comments - Policy