We extend a theorem of Ladkani concerning derived equivalences between upper-triangular matrix rings to ring spectra. Our result also extends an analogous theorem of Maycock for differential graded algebras. We illustrate the main result with certain canonical equivalences determined by a smooth or proper ring spectrum.
Nous étendons un théorème de Ladkani concernant les équivalences dérivées entre les anneaux à matrice triangulaire supérieure aux spectres en anneaux. Notre résultat étend également un théorème analogue de Maycock pour les algèbres différentielles graduées. Nous illustrons le résultat principal par certaines équivalences canoniques déterminés par un spectre en anneaux lisse ou propre.
Revised:
Accepted:
Published online:
Keywords: Upper-triangular matrix ring, derived equivalences, reflection functors, ring spectrum
Mots-clés : Anneaux de matrices triangulaires supérieures, équivalences dérivées, foncteurs de réflexion, spectre en anneaux
Gustavo Jasso 1

@article{CRMATH_2024__362_G3_279_0, author = {Gustavo Jasso}, title = {Derived equivalences of upper-triangular ring spectra via lax limits}, journal = {Comptes Rendus. Math\'ematique}, pages = {279--285}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.559}, language = {en}, }
Gustavo Jasso. Derived equivalences of upper-triangular ring spectra via lax limits. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 279-285. doi : 10.5802/crmath.559. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.559/
[1] Coxeter functors, and Gabriel’s theorem, Usp. Mat. Nauk, Volume 28 (1973) no. 2(170), pp. 19-33 | MR
[2] Relative critical loci and quiver moduli (to appear in Ann. Sci. École Norm. Sup.) | arXiv
[3] Relative Calabi–Yau structures, Compos. Math., Volume 155 (2019) no. 2, pp. 372-412 | DOI | MR | Zbl
[4] Relative Calabi–Yau structures II: shifted Lagrangians in the moduli of objects, Sel. Math., New Ser., Volume 27 (2021) no. 4, 63, 45 pages | DOI | MR
[5] Generalised BGP reflection functors via the Grothendieck construction, Int. Math. Res. Not. (2021) no. 20, pp. 15733-15745 | DOI | MR
[6] Lax colimits and free fibrations in -categories, Doc. Math., Volume 22 (2017), pp. 1225-1266 | DOI | MR
[7] Calabi–Yau algebras (2006) | arXiv
[8] Deformed Calabi–Yau completions, J. Reine Angew. Math., Volume 654 (2011), pp. 125-180 (with an appendix by Michel Van den Bergh) | DOI | MR
[9] Relative cluster categories and Higgs categories with infinite-dimensional morphism spaces (2023) (with an appendix Chris Fraser and Keller, Bernhard) | arXiv
[10] Notes on -algebras, -categories and non-commutative geometry, Homological mirror symmetry (Lecture Notes in Physics), Volume 757, Springer, 2006, pp. 153-219 | MR
[11] Categorical resolutions of irrational singularities, Int. Math. Res. Not. (2015) no. 13, pp. 4536-4625 | DOI | MR
[12] Derived equivalences of triangular matrix rings arising from extensions of tilting modules, Algebr. Represent. Theory, Volume 14 (2011) no. 1, pp. 57-74 | DOI | MR
[13] Higher topos theory, Annals of Mathematics Studies, 170, Princeton University Press, 2009, xviii+925 pages | DOI | MR
[14] Higher Algebra, 2017 (available online at the author’s webpage: https://www.math.ias.edu/~lurie/papers/HA.pdf)
[15] Spectral Algebraic Geometry, 2018 (available online at the author’s website: https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf)
[16] Derived equivalences of upper triangular differential graded algebras, Commun. Algebra, Volume 39 (2011) no. 7, pp. 2367-2387 | DOI | MR
[17] Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, 1099, Springer, 1984, xiii+376 pages | DOI | MR
[18] Regularity of spectral stacks and discreteness of weight-hearts, Q. J. Math., Volume 73 (2022) no. 1, pp. 23-44 | DOI | MR
[19] Derived algebraic geometry, EMS Surv. Math. Sci., Volume 1 (2014) no. 2, pp. 153-240 | DOI | MR
[20] Categorification of ice quiver mutation, Math. Z., Volume 304 (2023) no. 1, 11, 42 pages | DOI | MR
[21] Relative cluster categories and Higgs categories, Adv. Math., Volume 424 (2023), 109040, 112 pages | DOI | MR
[22] Relative Calabi–Yau completions (2016) | arXiv
Cited by Sources:
Comments - Policy