Problem 155 of the Scottish Book asks whether every bijection between two Banach spaces with the property that, each point of has a neighborhood on which is isometric, is globally isometric on . We prove that this is true under the additional assumption that is separable and the weaker assumption of surjectivity instead of bijectivity.
Le problème 155 du Scottish Book demande si toute bijection entre deux espaces de Banach ayant la propriété que chaque point de a un voisinage sur lequel U est isométrique, est globalement isométrique sur . Nous prouvons que ceci est vrai sous l’hypothèse supplémentaire que est séparable et l’hypothèse plus faible de surjectivité au lieu de bijectivité.
Revised:
Accepted:
Published online:
Michiya Mori 1, 2

@article{CRMATH_2024__362_G8_813_0, author = {Michiya Mori}, title = {On the {Scottish} {Book} {Problem} 155 by {Mazur} and {Sternbach}}, journal = {Comptes Rendus. Math\'ematique}, pages = {813--816}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.572}, language = {en}, }
Michiya Mori. On the Scottish Book Problem 155 by Mazur and Sternbach. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 813-816. doi : 10.5802/crmath.572. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.572/
[1] On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astron. Phys., Volume 20 (1972), pp. 367-371 | MR | Zbl
[2] The Scottish Book. Mathematics from the Scottish Café. With selected problems from the New Scottish Book, Birkhäuser/Springer, 2015 | DOI | Zbl
[3] Sur les transformationes isométriques d’espaces vectoriels normés, C. R. Acad. Sci. Paris, Volume 194 (1932), pp. 946-948 | Zbl
[4] General Topology, Dover Publications, Mineola, 2004 | MR | Zbl
Cited by Sources:
Comments - Policy