Comptes Rendus
Research article - Number theory
Purity and almost strict purity of Anderson t-modules
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 807-812.

We study the relations between the notion of purity of a t-module introduced by Anderson and that of almost strict purity for a t-module introduced by Namoijam and Papanikolas (concept already mentioned by G. Anderson and D. Goss).

On étudie les relations entre la notion de pureté d’un t-module introduite par Anderson et celle de presque pureté pour un t-module introduite par Namoijam et Papanikolas (concept déjà mentionné par G. Anderson et D. Goss).

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.611
Keywords: Purity, almost strict purity, Anderson t-modules, $t$-motive, Newton polygons
Mot clés : Pureté, presque stricte pureté, t-modules d’Anderson, $t$-motifs, polygone de Newton

Lucas Alexis 1

1 Normandie Univ, UNICAEN, CNRS, LMNO, 14000 Caen, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G7_807_0,
     author = {Lucas Alexis},
     title = {Purity and almost strict purity of {Anderson} $t$-modules},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {807--812},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.611},
     language = {en},
}
TY  - JOUR
AU  - Lucas Alexis
TI  - Purity and almost strict purity of Anderson $t$-modules
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 807
EP  - 812
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.611
LA  - en
ID  - CRMATH_2024__362_G7_807_0
ER  - 
%0 Journal Article
%A Lucas Alexis
%T Purity and almost strict purity of Anderson $t$-modules
%J Comptes Rendus. Mathématique
%D 2024
%P 807-812
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.611
%G en
%F CRMATH_2024__362_G7_807_0
Lucas Alexis. Purity and almost strict purity of Anderson $t$-modules. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 807-812. doi : 10.5802/crmath.611. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.611/

[1] Greg W. Anderson t-motives, Duke Math. J., Volume 53 (1986) no. 2, pp. 457-502 | DOI | MR | Zbl

[2] David Goss Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 35, Springer, 1996, xiv+422 pages | DOI | MR | Zbl

[3] Andreas Maurischat Abelian equals A-finite for Anderson A-modules (2022) (https://arxiv.org/abs/2110.11114v2)

[4] Changningphaabi Namoijam; Matthew A. Papanikolas Hyperderivatives of periods and quasi-periods for Anderson t-modules (2022) (https://arxiv.org/abs/2103.05836)

Cited by Sources:

Comments - Policy