We study the relations between the notion of purity of a -module introduced by Anderson and that of almost strict purity for a -module introduced by Namoijam and Papanikolas (concept already mentioned by G. Anderson and D. Goss).
On étudie les relations entre la notion de pureté d’un t-module introduite par Anderson et celle de presque pureté pour un t-module introduite par Namoijam et Papanikolas (concept déjà mentionné par G. Anderson et D. Goss).
Revised:
Accepted:
Published online:
Mot clés : Pureté, presque stricte pureté, t-modules d’Anderson, $t$-motifs, polygone de Newton
Lucas Alexis 1
@article{CRMATH_2024__362_G7_807_0, author = {Lucas Alexis}, title = {Purity and almost strict purity of {Anderson} $t$-modules}, journal = {Comptes Rendus. Math\'ematique}, pages = {807--812}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.611}, language = {en}, }
Lucas Alexis. Purity and almost strict purity of Anderson $t$-modules. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 807-812. doi : 10.5802/crmath.611. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.611/
[1] -motives, Duke Math. J., Volume 53 (1986) no. 2, pp. 457-502 | DOI | MR | Zbl
[2] Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 35, Springer, 1996, xiv+422 pages | DOI | MR | Zbl
[3] Abelian equals A-finite for Anderson A-modules (2022) (https://arxiv.org/abs/2110.11114v2)
[4] Hyperderivatives of periods and quasi-periods for Anderson -modules (2022) (https://arxiv.org/abs/2103.05836)
Cited by Sources:
Comments - Policy