Comptes Rendus
Research article - Algebra
Universal support for triangulated categories
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 635-637.

We revisit a result of Gratz and Stevenson on the universal space that carries supports for objects of a triangulated category, in the absence of a tensor product.

Nous revisitons un résultat de Gratz et Stevenson au sujet de l’espace universel équipé de supports pour les objets d’une catégorie triangulée, en l’absence d’un produit tensoriel.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.576
Classification: 18F99, 18G80

Paul Balmer 1; Pablo Sanchez Ocal 1

1 UCLA Mathematics Department, BOX 951555, Los Angeles, CA 90095-1555, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G6_635_0,
     author = {Paul Balmer and Pablo Sanchez Ocal},
     title = {Universal support for triangulated categories},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {635--637},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.576},
     language = {en},
}
TY  - JOUR
AU  - Paul Balmer
AU  - Pablo Sanchez Ocal
TI  - Universal support for triangulated categories
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 635
EP  - 637
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.576
LA  - en
ID  - CRMATH_2024__362_G6_635_0
ER  - 
%0 Journal Article
%A Paul Balmer
%A Pablo Sanchez Ocal
%T Universal support for triangulated categories
%J Comptes Rendus. Mathématique
%D 2024
%P 635-637
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.576
%G en
%F CRMATH_2024__362_G6_635_0
Paul Balmer; Pablo Sanchez Ocal. Universal support for triangulated categories. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 635-637. doi : 10.5802/crmath.576. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.576/

[1] P. Balmer The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math., Volume 588 (2005), pp. 149-168 | DOI | Zbl

[2] A. Bakke Buan; H. Krause; Ø. Solberg Support varieties: an ideal approach, Homology Homotopy Appl., Volume 9 (2007) no. 1, pp. 45-74 | DOI | Zbl

[3] K. Brüning Thick subcategories of the derived category of a hereditary algebra, Homology Homotopy Appl., Volume 9 (2007) no. 2, pp. 165-176 | DOI | Zbl

[4] S. Gratz; G. Stevenson Approximating triangulated categories by spaces, Adv. Math. (2023), 109073 | DOI | Zbl

[5] H. Krause An analogue of Stone duality via support (2023) (https://arxiv.org/abs/2307.12391)

[6] J. Kock; P. Wolfgang Hochster duality in derived categories and point-free reconstruction of schemes, Trans. Am. Math. Soc., Volume 369 (2017) no. 1, pp. 223-261 | DOI | Zbl

Cited by Sources:

Comments - Policy