[Support universel pour les catégories triangulées]
We revisit a result of Gratz and Stevenson on the universal space that carries supports for objects of a triangulated category, in the absence of a tensor product.
Nous revisitons un résultat de Gratz et Stevenson au sujet de l’espace universel équipé de supports pour les objets d’une catégorie triangulée, en l’absence d’un produit tensoriel.
Révisé le :
Accepté le :
Publié le :
Paul Balmer 1 ; Pablo Sanchez Ocal 1

@article{CRMATH_2024__362_G6_635_0, author = {Paul Balmer and Pablo Sanchez Ocal}, title = {Universal support for triangulated categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {635--637}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.576}, language = {en}, }
Paul Balmer; Pablo Sanchez Ocal. Universal support for triangulated categories. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 635-637. doi : 10.5802/crmath.576. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.576/
[1] The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math., Volume 588 (2005), pp. 149-168 | DOI | MR | Zbl
[2] Support varieties: an ideal approach, Homology Homotopy Appl., Volume 9 (2007) no. 1, pp. 45-74 | DOI | MR | Zbl
[3] Thick subcategories of the derived category of a hereditary algebra, Homology Homotopy Appl., Volume 9 (2007) no. 2, pp. 165-176 | DOI | MR | Zbl
[4] Approximating triangulated categories by spaces, Adv. Math. (2023), 109073 | DOI | MR | Zbl
[5] An analogue of Stone duality via support (2023) (https://arxiv.org/abs/2307.12391)
[6] Hochster duality in derived categories and point-free reconstruction of schemes, Trans. Am. Math. Soc., Volume 369 (2017) no. 1, pp. 223-261 | DOI | Zbl
Cité par Sources :
Commentaires - Politique