We revisit a result of Gratz and Stevenson on the universal space that carries supports for objects of a triangulated category, in the absence of a tensor product.
Nous revisitons un résultat de Gratz et Stevenson au sujet de l’espace universel équipé de supports pour les objets d’une catégorie triangulée, en l’absence d’un produit tensoriel.
Revised:
Accepted:
Published online:
Paul Balmer 1; Pablo Sanchez Ocal 1
@article{CRMATH_2024__362_G6_635_0, author = {Paul Balmer and Pablo Sanchez Ocal}, title = {Universal support for triangulated categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {635--637}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.576}, language = {en}, }
Paul Balmer; Pablo Sanchez Ocal. Universal support for triangulated categories. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 635-637. doi : 10.5802/crmath.576. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.576/
[1] The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math., Volume 588 (2005), pp. 149-168 | DOI | Zbl
[2] Support varieties: an ideal approach, Homology Homotopy Appl., Volume 9 (2007) no. 1, pp. 45-74 | DOI | Zbl
[3] Thick subcategories of the derived category of a hereditary algebra, Homology Homotopy Appl., Volume 9 (2007) no. 2, pp. 165-176 | DOI | Zbl
[4] Approximating triangulated categories by spaces, Adv. Math. (2023), 109073 | DOI | Zbl
[5] An analogue of Stone duality via support (2023) (https://arxiv.org/abs/2307.12391)
[6] Hochster duality in derived categories and point-free reconstruction of schemes, Trans. Am. Math. Soc., Volume 369 (2017) no. 1, pp. 223-261 | DOI | Zbl
Cited by Sources:
Comments - Policy