logo CRAS
Comptes Rendus. Mathématique
Theory of Representations, Algebra, Combinatorics
Breaking down the reduced Kronecker coefficients
Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 463-468.

We resolve three interrelated problems on reduced Kronecker coefficients g ¯(α,β,γ). First, we disprove the saturation property which states that g ¯(Nα,Nβ,Nγ)>0 implies g ¯(α,β,γ)>0 for all N>1. Second, we esimate the maximal g ¯(α,β,γ), over all |α|+|β|+|γ|=n. Finally, we show that computing g ¯(λ,μ,ν) is strongly #P-hard, i.e. #P-hard when the input (λ,μ,ν) is in unary.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/crmath.60
Igor Pak 1; Greta Panova 2

1 Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
2 Department of Mathematics, USC, Los Angeles, CA 90089, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_4_463_0,
     author = {Igor Pak and Greta Panova},
     title = {Breaking down the reduced {Kronecker} coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {463--468},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {4},
     year = {2020},
     doi = {10.5802/crmath.60},
     language = {en},
}
TY  - JOUR
TI  - Breaking down the reduced Kronecker coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2020
DA  - 2020///
SP  - 463
EP  - 468
VL  - 358
IS  - 4
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.60
DO  - 10.5802/crmath.60
LA  - en
ID  - CRMATH_2020__358_4_463_0
ER  - 
%0 Journal Article
%T Breaking down the reduced Kronecker coefficients
%J Comptes Rendus. Mathématique
%D 2020
%P 463-468
%V 358
%N 4
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.60
%R 10.5802/crmath.60
%G en
%F CRMATH_2020__358_4_463_0
Igor Pak; Greta Panova. Breaking down the reduced Kronecker coefficients. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 463-468. doi : 10.5802/crmath.60. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.60/

[1] Christine Bessenrodt; Christiane Behns On the Durfee size of Kronecker products of characters of the symmetric group and its double covers, J. Algebra, Volume 280 (2004) no. 1, pp. 132-144 | DOI | MR | Zbl

[2] Christopher Bowman; Maud De Visscher; Rosa Orellana The partition algebra and the Kronecker coefficients, Trans. Am. Math. Soc., Volume 367 (2015) no. 5, pp. 3647-3667 | DOI | MR | Zbl

[3] Emmanuel Briand; Rosa Orellana; Mercedes Rosas The stability of the Kronecker product of Schur functions, J. Algebra, Volume 331 (2011) no. 1, pp. 11-27 | DOI | MR | Zbl

[4] Matthias Christandl; Aram W. Harrow; Graeme Mitchison Nonzero Kronecker coefficients and what they tell us about spectra, Commun. Math. Phys., Volume 270 (2007) no. 3, pp. 575-585 | DOI | MR | Zbl

[5] Laura Colmenarejo; Mercedes Rosas Combinatorics on a family of reduced Kronecker coefficients, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 10, pp. 865-869 | DOI | MR | Zbl

[6] Yoav Dvir On the Kronecker product of S n characters, J. Algebra, Volume 154 (1993) no. 1, pp. 125-140 | DOI | MR | Zbl

[7] Christian Ikenmeyer; Ketan D. Mulmuley; Michael Walter On vanishing of Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 4, pp. 949-992 | DOI | MR | Zbl

[8] Christian Ikenmeyer; Greta Panova Rectangular Kronecker coefficients and plethysms in geometric complexity theory, Adv. Math., Volume 319 (2017), pp. 40-66 | DOI | MR | Zbl

[9] Anatol N. Kirillov An invitation to the generalized saturation conjecture, Publ. Res. Inst. Math. Sci., Volume 40 (2004) no. 4, pp. 1147-1239 | DOI | MR | Zbl

[10] Alexander Klyachko Quantum marginal problem and representations of the symmetric group (2004) (https://arxiv.org/abs/quant-ph/0409113)

[11] Allen Knutson; Terence Tao The honeycomb model of GL n () tensor products. I: Proof of the saturation conjecture, J. Am. Math. Soc., Volume 12 (1999) no. 4, pp. 1055-1090 | DOI | MR | Zbl

[12] Dudley E. Littlewood Products and plethysms of characters with orthogonal, symplectic and symmetric groups, Can. J. Math., Volume 10 (1958), pp. 17-32 | DOI | MR | Zbl

[13] Laurent Manivel On the asymptotics of Kronecker coefficients, J. Algebr. Comb., Volume 42 (2015) no. 4, pp. 999-1025 | DOI | MR | Zbl

[14] Ketan D. Mulmuley; Hariharan Narayanan; Milind Sohoni Geometric complexity theory III: On deciding nonvanishing of a Littlewood–Richardson coefficient, J. Algebr. Comb., Volume 36 (2012), pp. 103-110 | DOI | MR | Zbl

[15] Francis D. Murnaghan The analysis of the Kronecker product of irreducible representations of the symmetric group, Am. J. Math., Volume 60 (1938), pp. 761-784 | DOI | MR | Zbl

[16] Francis D. Murnaghan On the Kronecker product of irreducible representations of the symmetric group, Proc. Natl. Acad. Sci. USA, Volume 42 (1956), pp. 95-98 | DOI | MR | Zbl

[17] Hariharan Narayanan On the complexity of computing Kostka numbers and Littlewood–Richardson coefficients, J. Algebr. Comb., Volume 24 (2006) no. 3, pp. 347-354 | DOI | MR | Zbl

[18] Rosa Orellana; Mike Zabrocki Products of symmetric group characters, J. Comb. Theory, Ser. A, Volume 165 (2019), pp. 299-324 | DOI | MR | Zbl

[19] Igor Pak; Greta Panova On the complexity of computing Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 1, pp. 1-36 | MR | Zbl

[20] Igor Pak; Greta Panova Upper bounds on Kronecker coefficients with few rows (2020) (https://arxiv.org/abs/2002.10956)

[21] Igor Pak; Greta Panova; Damir Yeliussizov On the largest Kronecker and Littlewood–Richardson coefficients, J. Comb. Theory, Ser. A, Volume 165 (2019), pp. 44-77 | MR | Zbl

[22] Steven V. Sam; Andrew Snowden Proof of Stembridge’s conjecture on stability of Kronecker, J. Algebr. Comb., Volume 43 (2016) no. 1, pp. 1-10 | MR | Zbl

[23] Richard P. Stanley Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999 | Zbl

[24] Richard P. Stanley Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, American Mathematical Society, 2000, pp. 295-319 | Zbl

[25] Richard P. Stanley Supplementary Excercies to [23, Ch. 7], 2011 (http://www-math.mit.edu/~rstan/ec)

[26] Richard P. Stanley Plethysm and Kronecker Products, 2016 (talk slides, http://www-math.mit.edu/~rstan/transparencies/plethysm.pdf)

[27] Ernesto Vallejo Stability of Kronecker products of irreducible characters of the symmetric group, Electron. J. Comb., Volume 6 (1999) no. 1, R39, 7 pages | MR | Zbl

Cited by Sources: