[Reconstruction de mesures discrètes à partir de projections. Conséquences sur la distance de Sliced Wasserstein empirique]
On s’intéresse dans cet article au problème de reconstruction d’une mesure discrète sur connaissant ses images par des applications linéaires (par exemple des projections sur des sous-espaces). La mesure étant fixée, en supposant que les lignes des matrices sont des réalisations indépendantes de lois ne donnant pas de masse aux hyperplans, on montre que si , ce problème de reconstruction a presque sûrement une unique solution, et ceci quelque soit le nombre de points dans . Ce résultat permet de démontrer une propriété de séparabilité presque sûre pour la distance de Sliced–Wasserstein empirique.
This paper deals with the reconstruction of a discrete measure on from the knowledge of its pushforward measures by linear applications (for instance projections onto subspaces). The measure being fixed, assuming that the rows of the matrices are independent realizations of laws which do not give mass to hyperplanes, we show that if , this reconstruction problem has almost certainly a unique solution. This holds for any number of points in . A direct consequence of this result is an almost-sure separability property on the empirical Sliced Wasserstein distance.
Révisé le :
Accepté le :
Publié le :
Keywords: Reconstruction, Inverse Problems, Discrete Measures
Mot clés : Reconstruction, problèmes inverses, mesures discrètes
Eloi Tanguy 1 ; Rémi Flamary 2 ; Julie Delon 1
@article{CRMATH_2024__362_G10_1121_0, author = {Eloi Tanguy and R\'emi Flamary and Julie Delon}, title = {Reconstructing discrete measures from projections. {Consequences} on the empirical {Sliced} {Wasserstein} {Distance}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1121--1129}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.601}, language = {en}, }
TY - JOUR AU - Eloi Tanguy AU - Rémi Flamary AU - Julie Delon TI - Reconstructing discrete measures from projections. Consequences on the empirical Sliced Wasserstein Distance JO - Comptes Rendus. Mathématique PY - 2024 SP - 1121 EP - 1129 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.601 LA - en ID - CRMATH_2024__362_G10_1121_0 ER -
%0 Journal Article %A Eloi Tanguy %A Rémi Flamary %A Julie Delon %T Reconstructing discrete measures from projections. Consequences on the empirical Sliced Wasserstein Distance %J Comptes Rendus. Mathématique %D 2024 %P 1121-1129 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.601 %G en %F CRMATH_2024__362_G10_1121_0
Eloi Tanguy; Rémi Flamary; Julie Delon. Reconstructing discrete measures from projections. Consequences on the empirical Sliced Wasserstein Distance. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1121-1129. doi : 10.5802/crmath.601. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.601/
[1] Sliced and Radon Wasserstein barycenters of measures, J. Math. Imaging Vis., Volume 51 (2015) no. 1, pp. 22-45 | DOI | MR | Zbl
[2] Random projections, marginals, and moments (https://djalil.chafai.net/docs/projections.pdf)
[3] Probability distributions with given multivariate marginals and given dependence structure, J. Multivariate Anal., Volume 42 (1992) no. 1, pp. 51-66 | DOI | MR | Zbl
[4] Some Theorems on Distribution Functions, J. Lond. Math. Soc., Volume 11 (1936) no. 4, pp. 290-294 | DOI | MR | Zbl
[5] Advances in probability distributions with given marginals. Beyond the copulas, Mathematics and its Applications, 67, Springer, 2012 | DOI
[6] Generative Modeling Using the Sliced Wasserstein Distance, 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, Computer Vision Foundation / IEEE Computer Society (2018), pp. 3483-3491 | DOI
[7] Determining point distributions from their projections, 2017 International Conference on Sampling Theory and Applications (SampTA) (2017), pp. 164-168 | DOI
[8] Uniqueness and complexity in discrete tomography, Discrete tomography (Applied and Numerical Harmonic Analysis), Birkhäuser, 1999, pp. 85-113 | DOI | MR | Zbl
[9] On multistochastic Monge-Kantorovich problem, bitwise operations, and fractals, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 5, 173, 33 pages | DOI | MR | Zbl
[10] On the determination of probability distributions of more dimensions by their projections, Acta Math. Acad. Sci. Hung., Volume 7 (1956), pp. 403-410 | DOI | MR | Zbl
[11] Parametric families of multivariate distributions with given margins, J. Multivariate Anal., Volume 46 (1993) no. 2, pp. 262-282 | DOI | MR | Zbl
[12] Progressive Growing of GANs for Improved Quality, Stability, and Variation, International Conference on Learning Representations (2018)
[13] Verteilungsfunktionen mit gegebenen Marginalverteilungen, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 3 (1964), pp. 247-270 | DOI | MR | Zbl
[14] On a construction of multivariate distributions given some multidimensional marginals, Adv. Appl. Probab., Volume 51 (2019) no. 2, pp. 487-513 | DOI | MR | Zbl
[15] Sliced-Wasserstein distance for large-scale machine learning: theory, methodology and extensions, Ph. D. Thesis, Institut polytechnique de Paris (2021)
[16] Computational Optimal Transport: With Applications to Data Science, Found. Trends Mach. Learn., Volume 11 (2019) no. 5-6, pp. 355-607 | DOI | Zbl
[17] Wasserstein Barycenter and Its Application to Texture Mixing, Scale Space and Variational Methods in Computer Vision (Alfred M. Bruckstein; Bart M. ter Haar Romeny; Alexander M. Bronstein; Michael M. Bronstein, eds.), Springer, 2012, pp. 435-446 | DOI
[18] On projections of probability distributions, Acta Math. Acad. Sci. Hung., Volume 3 (1952), pp. 131-142 | DOI | MR | Zbl
[19] Convergence of sgd for training neural networks with sliced Wasserstein losses (2023) (https://arxiv.org/abs/2307.11714)
[20] Sensing theorems for unsupervised learning in linear inverse problems, J. Mach. Learn. Res., Volume 24 (2023), 39, 45 pages | DOI | MR | Zbl
[21] Properties of discrete sliced Wasserstein losses (2023)
[22] Sliced Wasserstein Generative Models, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 3708-3717 | DOI
Cité par Sources :
Commentaires - Politique