Comptes Rendus
Article de recherche - Probabilités
Reconstructing discrete measures from projections. Consequences on the empirical Sliced Wasserstein Distance
[Reconstruction de mesures discrètes à partir de projections. Conséquences sur la distance de Sliced Wasserstein empirique]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1121-1129.

On s’intéresse dans cet article au problème de reconstruction d’une mesure discrète γZ sur d connaissant ses images par des applications linéaires Pi:ddi (par exemple des projections sur des sous-espaces). La mesure γZ étant fixée, en supposant que les lignes des matrices Pi sont des réalisations indépendantes de lois ne donnant pas de masse aux hyperplans, on montre que si idi>d, ce problème de reconstruction a presque sûrement une unique solution, et ceci quelque soit le nombre de points dans γZ. Ce résultat permet de démontrer une propriété de séparabilité presque sûre pour la distance de Sliced–Wasserstein empirique.

This paper deals with the reconstruction of a discrete measure γZ on d from the knowledge of its pushforward measures Pi#γZ by linear applications Pi:ddi (for instance projections onto subspaces). The measure γZ being fixed, assuming that the rows of the matrices Pi are independent realizations of laws which do not give mass to hyperplanes, we show that if idi>d, this reconstruction problem has almost certainly a unique solution. This holds for any number of points in γZ. A direct consequence of this result is an almost-sure separability property on the empirical Sliced Wasserstein distance.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.601
Classification : 28E99, 15A29
Keywords: Reconstruction, Inverse Problems, Discrete Measures
Mots-clés : Reconstruction, problèmes inverses, mesures discrètes

Eloi Tanguy 1 ; Rémi Flamary 2 ; Julie Delon 1

1 Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
2 CMAP, CNRS, École Polytechnique, Institut Polytechnique de Paris
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G10_1121_0,
     author = {Eloi Tanguy and R\'emi Flamary and Julie Delon},
     title = {Reconstructing discrete measures from projections. {Consequences} on the empirical {Sliced} {Wasserstein} {Distance}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1121--1129},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.601},
     zbl = {07939447},
     language = {en},
}
TY  - JOUR
AU  - Eloi Tanguy
AU  - Rémi Flamary
AU  - Julie Delon
TI  - Reconstructing discrete measures from projections. Consequences on the empirical Sliced Wasserstein Distance
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1121
EP  - 1129
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.601
LA  - en
ID  - CRMATH_2024__362_G10_1121_0
ER  - 
%0 Journal Article
%A Eloi Tanguy
%A Rémi Flamary
%A Julie Delon
%T Reconstructing discrete measures from projections. Consequences on the empirical Sliced Wasserstein Distance
%J Comptes Rendus. Mathématique
%D 2024
%P 1121-1129
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.601
%G en
%F CRMATH_2024__362_G10_1121_0
Eloi Tanguy; Rémi Flamary; Julie Delon. Reconstructing discrete measures from projections. Consequences on the empirical Sliced Wasserstein Distance. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1121-1129. doi : 10.5802/crmath.601. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.601/

[1] Nicolas Bonneel; Julien Rabin; Gabriel Peyré; Hanspeter Pfister Sliced and Radon Wasserstein barycenters of measures, J. Math. Imaging Vis., Volume 51 (2015) no. 1, pp. 22-45 | DOI | MR | Zbl

[2] Dajlil Chafaï Random projections, marginals, and moments (https://djalil.chafai.net/docs/projections.pdf)

[3] C. M. Cuadras Probability distributions with given multivariate marginals and given dependence structure, J. Multivariate Anal., Volume 42 (1992) no. 1, pp. 51-66 | DOI | MR | Zbl

[4] H. Cramér; H. Wold Some Theorems on Distribution Functions, J. Lond. Math. Soc., Volume 11 (1936) no. 4, pp. 290-294 | DOI | MR | Zbl

[5] Giorgio Dall’Aglio; Samuel Kotz; Gabriella Salinetti Advances in probability distributions with given marginals. Beyond the copulas, Mathematics and its Applications, 67, Springer, 2012 | DOI

[6] Ishan Deshpande; Ziyu Zhang; Alexander G. Schwing Generative Modeling Using the Sliced Wasserstein Distance, 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, Computer Vision Foundation / IEEE Computer Society (2018), pp. 3483-3491 | DOI

[7] Aingeru Fernández-Bertolin; Philippe Jaming; Karlheinz Gröchenig Determining point distributions from their projections, 2017 International Conference on Sampling Theory and Applications (SampTA) (2017), pp. 164-168 | DOI

[8] Richard J. Gardner; Peter Gritzmann Uniqueness and complexity in discrete tomography, Discrete tomography (Applied and Numerical Harmonic Analysis), Birkhäuser, 1999, pp. 85-113 | DOI | MR | Zbl

[9] Nikita A. Gladkov; Alexander V. Kolesnikov; Alexander P. Zimin On multistochastic Monge-Kantorovich problem, bitwise operations, and fractals, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 5, 173, 33 pages | DOI | MR | Zbl

[10] A. Heppes On the determination of probability distributions of more dimensions by their projections, Acta Math. Acad. Sci. Hung., Volume 7 (1956), pp. 403-410 | DOI | MR | Zbl

[11] Harry Joe Parametric families of multivariate distributions with given margins, J. Multivariate Anal., Volume 46 (1993) no. 2, pp. 262-282 | DOI | MR | Zbl

[12] Tero Karras; Timo Aila; Samuli Laine; Jaakko Lehtinen Progressive Growing of GANs for Improved Quality, Stability, and Variation, International Conference on Learning Representations (2018)

[13] Hans G. Kellerer Verteilungsfunktionen mit gegebenen Marginalverteilungen, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 3 (1964), pp. 247-270 | DOI | MR | Zbl

[14] Nabil Kazi-Tani; Didier Rullière On a construction of multivariate distributions given some multidimensional marginals, Adv. Appl. Probab., Volume 51 (2019) no. 2, pp. 487-513 | DOI | MR | Zbl

[15] Kimia Nadjahi Sliced-Wasserstein distance for large-scale machine learning: theory, methodology and extensions, Ph. D. Thesis, Institut polytechnique de Paris (2021)

[16] Gabriel Peyré; Marco Cuturi Computational Optimal Transport: With Applications to Data Science, Found. Trends Mach. Learn., Volume 11 (2019) no. 5-6, pp. 355-607 | DOI | Zbl

[17] Julien Rabin; Gabriel Peyré; Julie Delon; Marc Bernot Wasserstein Barycenter and Its Application to Texture Mixing, Scale Space and Variational Methods in Computer Vision (Alfred M. Bruckstein; Bart M. ter Haar Romeny; Alexander M. Bronstein; Michael M. Bronstein, eds.), Springer, 2012, pp. 435-446 | DOI

[18] A. Rényi On projections of probability distributions, Acta Math. Acad. Sci. Hung., Volume 3 (1952), pp. 131-142 | DOI | MR | Zbl

[19] Eloi Tanguy Convergence of sgd for training neural networks with sliced Wasserstein losses (2023) (https://arxiv.org/abs/2307.11714)

[20] Julián Tachella; Dongdong Chen; Mike Davies Sensing theorems for unsupervised learning in linear inverse problems, J. Mach. Learn. Res., Volume 24 (2023), 39, 45 pages | DOI | MR | Zbl

[21] Eloi Tanguy; Rémi Flamary; Julie Delon Properties of discrete sliced Wasserstein losses (2023)

[22] Jiqing Wu; Zhiwu Huang; Dinesh Acharya; Wen Li; Janine Thoma; Danda Pani Paudel; Luc Van Gool Sliced Wasserstein Generative Models, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 3708-3717 | DOI

Cité par Sources :

Commentaires - Politique