[Limite globale des solutions d’un modèle de consommation de chimiotaxie avec motilité dépendante du signal et source logistique]
Cet article porte sur le système de chimiotaxie suivant :
sous des conditions aux limites homogènes de Neumann dans un domaine borné avec une frontière lisse. Ici, les fonctions et sont les suivantes :
où and
Pour le système ci-dessus, nous prouvons que le problème de valeur limite initiale correspondant admet une unique solution classique globale qui est uniformément bornée en temps. Ce résultat est obtenu sous certaines conditions sur la valeur initiale et et sans restriction sur et Le résultat obtenu étend les résultats récents obtenus pour ce problème.
This paper deals with the following chemotaxis system:
under homogeneous Neumann boundary conditions in a bounded domain with smooth boundary. Here, the functions and are as:
where and
For the above system, we prove that the corresponding initial boundary value problem admits a unique global classical solution which is uniformly-in-time bounded. This result is obtained under some conditions on initial value and and without any restriction on and The obtained result extends the recent results obtained for this problem.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2024__362_G10_1131_0, author = {Khadijeh Baghaei}, title = {Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source}, journal = {Comptes Rendus. Math\'ematique}, pages = {1131--1145}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.605}, language = {en}, }
TY - JOUR AU - Khadijeh Baghaei TI - Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source JO - Comptes Rendus. Mathématique PY - 2024 SP - 1131 EP - 1145 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.605 LA - en ID - CRMATH_2024__362_G10_1131_0 ER -
%0 Journal Article %A Khadijeh Baghaei %T Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source %J Comptes Rendus. Mathématique %D 2024 %P 1131-1145 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.605 %G en %F CRMATH_2024__362_G10_1131_0
Khadijeh Baghaei. Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1131-1145. doi : 10.5802/crmath.605. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.605/
[1] Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, Volume 32 (2019) no. 4, pp. 1327-1351 | DOI | MR | Zbl
[2] Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source, C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 1641-1652 | DOI | MR | Zbl
[3] Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 6, pp. 633-639 | DOI | Numdam | MR | Zbl
[4] Global existence and boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant and logistic source, Math. Methods Appl. Sci., Volume 40 (2017) no. 10, pp. 3799-3807 | DOI | MR | Zbl
[5] Delayed blow-up for chemotaxis models with local sensing, J. Lond. Math. Soc., Volume 103 (2021) no. 4, pp. 1596-1617 | DOI | MR | Zbl
[6] Global weak solutions and absorbing sets in a chemotaxis–Navier-Stokes system with prescribed signal concentration on the boundary, Math. Models Methods Appl. Sci., Volume 32 (2022) no. 1, pp. 137-173 | DOI | MR | Zbl
[7] Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 4, 107, 39 pages | DOI | MR | Zbl
[8] A logarithmic chemotaxis model featuring global existence and aggregation, Nonlinear Anal., Real World Appl., Volume 50 (2019), pp. 562-582 | DOI | MR | Zbl
[9] Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equations, Volume 269 (2020) no. 6, pp. 5338-5378 | DOI | MR | Zbl
[10] Boundedness of classical solutions to a degenerate Keller–Segel type model with signal-dependent motilities, Acta Appl. Math., Volume 176 (2021), 3, 36 pages | DOI | MR | Zbl
[11] Global boundedness of solutions to a parabolic-parabolic chemotaxis system with local sensing in higher dimensions, Nonlinearity, Volume 35 (2022) no. 7, pp. 3777-3811 | DOI | MR | Zbl
[12] Global weak solution for a chemotaxis Navier–Stokes system with -Laplacian diffusion and singular sensitivity, Nonlinear Anal., Real World Appl., Volume 73 (2023), 103898, 24 pages | DOI | Zbl
[13] Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., Volume 78 (2018) no. 3, pp. 1632-1657 | DOI | MR | Zbl
[14] Critical mass on the Keller–Segel system with signal-dependent motility, Proc. Am. Math. Soc., Volume 148 (2020) no. 11, pp. 4855-4873 | DOI | MR | Zbl
[15] Boundedness of classical solutions for a chemotaxis model with rotational flux terms, Z. Angew. Math. Mech., Volume 98 (2018) no. 10, pp. 1864-1877 | DOI | MR | Zbl
[16] Boundedness of classical solutions for a chemotaxis system with general sensitivity function, Appl. Anal., Volume 98 (2019) no. 3, pp. 611-621 | DOI | MR | Zbl
[17] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970) no. 3, pp. 399-415 | DOI | MR | Zbl
[18] Long term spatial homogeneity for a chemotaxis model with local sensing and consumption, Commun. Math. Sci., Volume 21 (2023) no. 6, pp. 1743-1750 | DOI | MR | Zbl
[19] Global solutions to a chemotaxis-growth system with signal-dependent motilities and signal consumption, J. Math. Anal. Appl., Volume 521 (2023) no. 1, 126902, 17 pages | DOI | MR | Zbl
[20] Relaxation in a Keller–Segel-consumption system involving signal-dependent motilities, Commun. Math. Sci., Volume 21 (2023) no. 2, pp. 299-322 | DOI | MR | Zbl
[21] Refined regularity analysis for a Keller-Segel-consumption system involving signal-dependent motilities, Appl. Anal., Volume 103 (2024) no. 1, pp. 45-64 | DOI | MR | Zbl
[22] Boundedness and stabilization in the chemotaxis consumption model with signal-dependent motility, Z. Angew. Math. Phys., Volume 72 (2021) no. 4, 170, 18 pages | DOI | MR | Zbl
[23] Global boundedness and large time behavior of solutions to a chemotaxis-consumption system with signal-dependent motility, Z. Angew. Math. Phys., Volume 72 (2021) no. 2, 57, 20 pages | DOI | MR | Zbl
[24] Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., Volume 381 (2011) no. 2, pp. 521-529 | DOI | MR | Zbl
[25] Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, Volume 102 (2005) no. 7, pp. 2277-2282 | DOI | Zbl
[26] Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equations, Volume 252 (2012) no. 3, pp. 2520-2543 | DOI | MR | Zbl
[27] Global solutions to a Keller-Segel-consumption system involving singularly signal-dependent motilities in domains of arbitrary dimension, J. Differ. Equations, Volume 343 (2023), pp. 390-418 | DOI | MR | Zbl
[28] Global dynamics for a chemotaxis consumption system with signal-dependent motility and logistic source, J. Differ. Equations, Volume 348 (2023), pp. 191-222 | DOI | MR | Zbl
[29] Stabilization in a two-dimensional chemotaxis-Navier–Stokes system, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 2, pp. 455-487 | DOI | MR | Zbl
[30] A result on parabolic gradient regularity in Orlicz spaces and application to absorption-induced blow-up prevention in a Keller–Segel-type cross-diffusion system, Int. Math. Res. Not., Volume 2023 (2023) no. 19, pp. 16336-16393 | DOI | MR | Zbl
[31] Global generalized solvability in a strongly degenerate taxis-type parabolic system modeling migration-consumption interaction, Z. Angew. Math. Phys., Volume 74 (2023) no. 1, 32, 20 pages | DOI | MR | Zbl
[32] Boundedness in the higher-dimensional Keller–Segel model with signal-dependent motility and logistic growth, J. Math. Phys., Volume 60 (2019) no. 1, 011507, 14 pages | DOI | MR | Zbl
[33] Global existence and uniform boundedness in a fully parabolic Keller–Segel system with non-monotonic signal-dependent motility, J. Differ. Equations, Volume 354 (2023), pp. 403-429 | DOI | MR | Zbl
[34] Global existence and aggregation in a Keller–Segel model with Fokker–Planck diffusion, Acta Appl. Math., Volume 149 (2017), pp. 101-123 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique