Comptes Rendus
Équations aux dérivées partielles
Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production
Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 161-168.

This paper deals with the chemotaxis system with nonlinear signal secretion

ut=·(D(u)u-S(u)v),xΩ,t>0,vt=Δv-v+g(u),xΩ,t>0,

under homogeneous Neumann boundary conditions in a bounded domain Ωn (n2). The diffusion function D(s)C2([0,)) and the chemotactic sensitivity function S(s)C2([0,)) are given by D(s)Cd(1+s)-α and 0<S(s)Css(1+s)β-1 for all s0 with Cd,Cs>0 and α,β. The nonlinear signal secretion function g(s)C1([0,)) is supposed to satisfy g(s)Cgsγforalls0 with Cg,γ>0. Global boundedness of solution is established under the specific conditions:

0<γ1andα+β<min1+1n,1+2n-γ.

The purpose of this work is to remove the upper bound of the diffusion condition assumed in [9], and we also give the necessary constraint α+β<1+1n, which is ignored in [9, Theorem 1.1].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.148
Classification : 35K35, 35A01, 35B44, 35B35, 92C17

Xu Pan 1 ; Liangchen Wang 1

1 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_2_161_0,
     author = {Xu Pan and Liangchen Wang},
     title = {Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {161--168},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {2},
     year = {2021},
     doi = {10.5802/crmath.148},
     language = {en},
}
TY  - JOUR
AU  - Xu Pan
AU  - Liangchen Wang
TI  - Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 161
EP  - 168
VL  - 359
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.148
LA  - en
ID  - CRMATH_2021__359_2_161_0
ER  - 
%0 Journal Article
%A Xu Pan
%A Liangchen Wang
%T Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production
%J Comptes Rendus. Mathématique
%D 2021
%P 161-168
%V 359
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmath.148
%G en
%F CRMATH_2021__359_2_161_0
Xu Pan; Liangchen Wang. Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 161-168. doi : 10.5802/crmath.148. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.148/

[1] Nicola Bellomo; Abdelghani Bellouquid; Youshan Tao; Michael Winkler Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 9, pp. 1663-1763 | DOI | MR | Zbl

[2] Dorothee D. Haroske; Hans Triebel Distributions, Sobolev Spaces, Elliptic Equations, EMS Textbooks in Mathematics, European Mathematical Society, 2008 | Zbl

[3] Dirk Horstmann; Michael Winkler Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equations, Volume 215 (2005) no. 1, pp. 52-107 | DOI | MR | Zbl

[4] Evelyn F. Keller; Lee A. Segel Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970) no. 3, pp. 399-415 | DOI | MR | Zbl

[5] Remigiusz Kowalczyk; Zuzanna Szymańska On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., Volume 343 (2008) no. 1, pp. 379-398 | DOI | MR | Zbl

[6] Noriko Mizoguchi; Philippe Souplet Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014) no. 4, pp. 851-875 corrigendum ibid. 36 (2019), no. 4, p. 1181 | DOI | Numdam | MR | Zbl

[7] Louis Nirenberg An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 20 (1966), pp. 733-737 | Numdam | MR | Zbl

[8] Christian Stinner; José Ignacio Tello; Michael Winkler Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., Volume 68 (2014) no. 7, pp. 1607-1626 | DOI | MR | Zbl

[9] Xueyan Tao; Shulin Zhou; Mengyao Ding Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production, J. Math. Anal. Appl., Volume 474 (2019) no. 1, pp. 733-747 | MR | Zbl

[10] Youshan Tao Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., Volume 381 (2011) no. 2, pp. 521-529 | MR | Zbl

[11] Youshan Tao; Zhi-An Wang Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 1, pp. 1-36 | MR | Zbl

[12] Youshan Tao; Michael Winkler Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equations, Volume 252 (2012) no. 1, pp. 692-715 | MR | Zbl

[13] Liangchen Wang; Yuhuan Li; Chunlai Mu Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 2, pp. 789-802 | DOI | MR | Zbl

[14] Liangchen Wang; Chunlai Mu; Xuegang Hu; Pan Zheng Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant, J. Differ. Equations, Volume 264 (2018) no. 5, pp. 3369-3401 | DOI | MR | Zbl

[15] Liangchen Wang; Chunlai Mu; Pan Zheng On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equations, Volume 256 (2014) no. 5, pp. 1847-1872 | DOI | MR | Zbl

[16] Michael Winkler Does a “volume-filling effect” always prevent chemotactic collapse?, Math. Methods Appl. Sci., Volume 33 (2010) no. 1, pp. 12-24 | DOI | MR | Zbl

[17] Michael Winkler; Youshan Tao Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst., Volume 20 (2015) no. 9, pp. 3165-3183 | DOI | MR | Zbl

[18] Qingshan Zhang; Xiaopan Liu; Xiaofei Yang Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals, J. Math. Phys., Volume 58 (2017) no. 11, 111504, 9 pages | MR | Zbl

  • Shuyan Qiu; Li Luo; Hong Yi Global existence and asymptotic stability of solutions to a two-species attraction-repulsion system with nonlinear signal production and logistic-type source, Discrete and Continuous Dynamical Systems. Series B, Volume 30 (2025) no. 3, pp. 817-842 | DOI:10.3934/dcdsb.2024111 | Zbl:1553.35040
  • Li Yang; Lu Xu; Xu Pan Improvement of conditions for global boundedness in a predator-prey system with pursuit-evasion interaction, Discrete and Continuous Dynamical Systems. Series B, Volume 29 (2024) no. 3, pp. 1187-1205 | DOI:10.3934/dcdsb.2023128 | Zbl:1532.35009
  • Rabil Ayazoglu; Mahir Kadakal; Ebubekir Akkoyunlu Dynamics in a parabolic-elliptic chemotaxis system with logistic source involving exponents depending on the spatial variables, Discrete and Continuous Dynamical Systems. Series B, Volume 29 (2024) no. 5, pp. 2110-2122 | DOI:10.3934/dcdsb.2023169 | Zbl:1534.35026
  • Yunxi Li; Chunlai Mu; Xu Pan Boundedness and asymptotic stability in a predator-prey system with density-dependent motilities, Discrete and Continuous Dynamical Systems. Series B, Volume 29 (2024) no. 5, pp. 2192-2212 | DOI:10.3934/dcdsb.2023173 | Zbl:1534.35030
  • Xu Pan Superlinear degradation in a doubly degenerate nutrient taxis system, Nonlinear Analysis. Real World Applications, Volume 77 (2024), p. 11 (Id/No 104040) | DOI:10.1016/j.nonrwa.2023.104040 | Zbl:1537.35218
  • Xu Pan; Chunlai Mu; Weirun Tao Global dynamics and spatiotemporal patterns of a two-species chemotaxis system with chemical signaling loop and Lotka-Volterra competition, Studies in Applied Mathematics, Volume 153 (2024) no. 3, p. 50 (Id/No e12746) | DOI:10.1111/sapm.12746 | Zbl:7974195
  • Yifeng Huili On a quasilinear two-species chemotaxis system with general kinetic functions and interspecific competition, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 5, p. 24 (Id/No 185) | DOI:10.1007/s00033-024-02325-5 | Zbl:1550.35068
  • Miaoqing Tian; Shujuan Wang; Xia Xiao Global boundedness in a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals, Discrete and Continuous Dynamical Systems. Series B, Volume 28 (2023) no. 1, pp. 197-208 | DOI:10.3934/dcdsb.2022071 | Zbl:1509.35059
  • Shujuan Wang; Jiahui Hu; Xia Xiao Global boundedness in a parabolic-parabolic-elliptic attraction-repulsion chemotaxis system with nonlinear productions, Discrete and Continuous Dynamical Systems. Series B, Volume 28 (2023) no. 6, pp. 3537-3546 | DOI:10.3934/dcdsb.2022229 | Zbl:1512.35095
  • Pan Zheng; Wenhai Shan Global boundedness and stability analysis of the quasilinear immune chemotaxis system, Journal of Differential Equations, Volume 344 (2023), pp. 556-607 | DOI:10.1016/j.jde.2022.11.004 | Zbl:1502.35028
  • Wenhai Shan; Pan Zheng Boundedness and asymptotic behavior in a quasilinear chemotaxis system for alopecia areata, Nonlinear Analysis. Real World Applications, Volume 72 (2023), p. 20 (Id/No 103858) | DOI:10.1016/j.nonrwa.2023.103858 | Zbl:1517.35051
  • Xu Pan; Liangchen Wang On a quasilinear fully parabolic two-species chemotaxis system with two chemicals, Discrete and Continuous Dynamical Systems. Series B, Volume 27 (2022) no. 1, pp. 361-391 | DOI:10.3934/dcdsb.2021047 | Zbl:1480.92035
  • Runlin Hu; Pan Zheng On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production, Discrete and Continuous Dynamical Systems. Series B, Volume 27 (2022) no. 12, pp. 7227-7244 | DOI:10.3934/dcdsb.2022041 | Zbl:1505.35245
  • Rabil Ayazoglu Global boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with variable logistic source, Journal of Mathematical Analysis and Applications, Volume 516 (2022) no. 1, p. 14 (Id/No 126482) | DOI:10.1016/j.jmaa.2022.126482 | Zbl:1496.35113
  • Yafeng Li; Chunlai Mu; Qiao Xin Convergence rate estimates of a higher-dimension reaction-diffusion system with density-dependent motility, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 4, p. 26 (Id/No 146) | DOI:10.1007/s00033-022-01762-4 | Zbl:1497.35049
  • Xu Pan; Liangchen Wang Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production, Communications on Pure and Applied Analysis, Volume 20 (2021) no. 6, pp. 2211-2236 | DOI:10.3934/cpaa.2021064 | Zbl:1475.92035
  • Xu Pan; Liangchen Wang; Xuegang Hu Boundedness and stabilization of solutions to a chemotaxis May–Nowak model, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 2 | DOI:10.1007/s00033-021-01491-0

Cité par 17 documents. Sources : Crossref, zbMATH

Commentaires - Politique