This paper deals with the chemotaxis system with nonlinear signal secretion
under homogeneous Neumann boundary conditions in a bounded domain
The purpose of this work is to remove the upper bound of the diffusion condition assumed in [9], and we also give the necessary constraint
Révisé le :
Accepté le :
Publié le :
Xu Pan 1 ; Liangchen Wang 1

@article{CRMATH_2021__359_2_161_0, author = {Xu Pan and Liangchen Wang}, title = {Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production}, journal = {Comptes Rendus. Math\'ematique}, pages = {161--168}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.148}, language = {en}, }
TY - JOUR AU - Xu Pan AU - Liangchen Wang TI - Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production JO - Comptes Rendus. Mathématique PY - 2021 SP - 161 EP - 168 VL - 359 IS - 2 PB - Académie des sciences, Paris DO - 10.5802/crmath.148 LA - en ID - CRMATH_2021__359_2_161_0 ER -
%0 Journal Article %A Xu Pan %A Liangchen Wang %T Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production %J Comptes Rendus. Mathématique %D 2021 %P 161-168 %V 359 %N 2 %I Académie des sciences, Paris %R 10.5802/crmath.148 %G en %F CRMATH_2021__359_2_161_0
Xu Pan; Liangchen Wang. Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 161-168. doi : 10.5802/crmath.148. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.148/
[1] Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 9, pp. 1663-1763 | DOI | MR | Zbl
[2] Distributions, Sobolev Spaces, Elliptic Equations, EMS Textbooks in Mathematics, European Mathematical Society, 2008 | Zbl
[3] Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equations, Volume 215 (2005) no. 1, pp. 52-107 | DOI | MR | Zbl
[4] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970) no. 3, pp. 399-415 | DOI | MR | Zbl
[5] On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., Volume 343 (2008) no. 1, pp. 379-398 | DOI | MR | Zbl
[6] Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014) no. 4, pp. 851-875 corrigendum ibid. 36 (2019), no. 4, p. 1181 | DOI | Numdam | MR | Zbl
[7] An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 20 (1966), pp. 733-737 | Numdam | MR | Zbl
[8] Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., Volume 68 (2014) no. 7, pp. 1607-1626 | DOI | MR | Zbl
[9] Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production, J. Math. Anal. Appl., Volume 474 (2019) no. 1, pp. 733-747 | MR | Zbl
[10] Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., Volume 381 (2011) no. 2, pp. 521-529 | MR | Zbl
[11] Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 1, pp. 1-36 | MR | Zbl
[12] Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equations, Volume 252 (2012) no. 1, pp. 692-715 | MR | Zbl
[13] Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 2, pp. 789-802 | DOI | MR | Zbl
[14] Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant, J. Differ. Equations, Volume 264 (2018) no. 5, pp. 3369-3401 | DOI | MR | Zbl
[15] On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equations, Volume 256 (2014) no. 5, pp. 1847-1872 | DOI | MR | Zbl
[16] Does a “volume-filling effect” always prevent chemotactic collapse?, Math. Methods Appl. Sci., Volume 33 (2010) no. 1, pp. 12-24 | DOI | MR | Zbl
[17] Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst., Volume 20 (2015) no. 9, pp. 3165-3183 | DOI | MR | Zbl
[18] Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals, J. Math. Phys., Volume 58 (2017) no. 11, 111504, 9 pages | MR | Zbl
- Global existence and asymptotic stability of solutions to a two-species attraction-repulsion system with nonlinear signal production and logistic-type source, Discrete and Continuous Dynamical Systems. Series B, Volume 30 (2025) no. 3, pp. 817-842 | DOI:10.3934/dcdsb.2024111 | Zbl:1553.35040
- Improvement of conditions for global boundedness in a predator-prey system with pursuit-evasion interaction, Discrete and Continuous Dynamical Systems. Series B, Volume 29 (2024) no. 3, pp. 1187-1205 | DOI:10.3934/dcdsb.2023128 | Zbl:1532.35009
- Dynamics in a parabolic-elliptic chemotaxis system with logistic source involving exponents depending on the spatial variables, Discrete and Continuous Dynamical Systems. Series B, Volume 29 (2024) no. 5, pp. 2110-2122 | DOI:10.3934/dcdsb.2023169 | Zbl:1534.35026
- Boundedness and asymptotic stability in a predator-prey system with density-dependent motilities, Discrete and Continuous Dynamical Systems. Series B, Volume 29 (2024) no. 5, pp. 2192-2212 | DOI:10.3934/dcdsb.2023173 | Zbl:1534.35030
- Superlinear degradation in a doubly degenerate nutrient taxis system, Nonlinear Analysis. Real World Applications, Volume 77 (2024), p. 11 (Id/No 104040) | DOI:10.1016/j.nonrwa.2023.104040 | Zbl:1537.35218
- Global dynamics and spatiotemporal patterns of a two-species chemotaxis system with chemical signaling loop and Lotka-Volterra competition, Studies in Applied Mathematics, Volume 153 (2024) no. 3, p. 50 (Id/No e12746) | DOI:10.1111/sapm.12746 | Zbl:7974195
- On a quasilinear two-species chemotaxis system with general kinetic functions and interspecific competition, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 5, p. 24 (Id/No 185) | DOI:10.1007/s00033-024-02325-5 | Zbl:1550.35068
- Global boundedness in a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals, Discrete and Continuous Dynamical Systems. Series B, Volume 28 (2023) no. 1, pp. 197-208 | DOI:10.3934/dcdsb.2022071 | Zbl:1509.35059
- Global boundedness in a parabolic-parabolic-elliptic attraction-repulsion chemotaxis system with nonlinear productions, Discrete and Continuous Dynamical Systems. Series B, Volume 28 (2023) no. 6, pp. 3537-3546 | DOI:10.3934/dcdsb.2022229 | Zbl:1512.35095
- Global boundedness and stability analysis of the quasilinear immune chemotaxis system, Journal of Differential Equations, Volume 344 (2023), pp. 556-607 | DOI:10.1016/j.jde.2022.11.004 | Zbl:1502.35028
- Boundedness and asymptotic behavior in a quasilinear chemotaxis system for alopecia areata, Nonlinear Analysis. Real World Applications, Volume 72 (2023), p. 20 (Id/No 103858) | DOI:10.1016/j.nonrwa.2023.103858 | Zbl:1517.35051
- On a quasilinear fully parabolic two-species chemotaxis system with two chemicals, Discrete and Continuous Dynamical Systems. Series B, Volume 27 (2022) no. 1, pp. 361-391 | DOI:10.3934/dcdsb.2021047 | Zbl:1480.92035
- On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production, Discrete and Continuous Dynamical Systems. Series B, Volume 27 (2022) no. 12, pp. 7227-7244 | DOI:10.3934/dcdsb.2022041 | Zbl:1505.35245
- Global boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with variable logistic source, Journal of Mathematical Analysis and Applications, Volume 516 (2022) no. 1, p. 14 (Id/No 126482) | DOI:10.1016/j.jmaa.2022.126482 | Zbl:1496.35113
- Convergence rate estimates of a higher-dimension reaction-diffusion system with density-dependent motility, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 4, p. 26 (Id/No 146) | DOI:10.1007/s00033-022-01762-4 | Zbl:1497.35049
- Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production, Communications on Pure and Applied Analysis, Volume 20 (2021) no. 6, pp. 2211-2236 | DOI:10.3934/cpaa.2021064 | Zbl:1475.92035
- Boundedness and stabilization of solutions to a chemotaxis May–Nowak model, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 2 | DOI:10.1007/s00033-021-01491-0
Cité par 17 documents. Sources : Crossref, zbMATH
Commentaires - Politique