The action of the duality functor on the odd torsion of was stated incorrectly in [3], in half of the cases, and lead to incorrect formulas for the odd primary torsion of and .
L’action du foncteur de dualité sur la torsion impaire de était énoncé incorrectement dans [3], dans la moitié des cas, et a conduit à des formules incorrectes pour la torsion primaire impaire de et .
Accepted:
Published online:
Marco Schlichting 1
CC-BY 4.0
@article{CRMATH_2024__362_G3_307_0,
author = {Marco Schlichting},
title = {Corrigendum to {{\textquotedblleft}Symplectic} and orthogonal $K$-groups of the integers{\textquotedblright}},
journal = {Comptes Rendus. Math\'ematique},
pages = {307--308},
year = {2024},
publisher = {Acad\'emie des sciences, Paris},
volume = {362},
doi = {10.5802/crmath.606},
language = {en},
}
Marco Schlichting. Corrigendum to “Symplectic and orthogonal $K$-groups of the integers”. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 307-308. doi: 10.5802/crmath.606
[1] Hermitian -theory for stable -categories, Part III: Grothendieck-Witt groups of rings (2020) (https://arxiv.org/abs/2009.07225)
[2] Bott periodicity in topological, algebraic and Hermitian -theory, Handbook of -theory. Vol. 1, 2, Springer, 2005, pp. 111-137 | Zbl | DOI
[3] Symplectic and orthogonal -groups of the integers, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 8, pp. 686-690 | DOI | MR | Numdam
[4] Algebraic -theory of rings of integers in local and global fields, Handbook of -theory. Vol. 1, 2, Springer, 2005, pp. 139-190 | DOI
Cited by Sources:
Comments - Policy
