[Note sur les champs de vecteurs libres à divergence nulle]
Nous présentons une base orthonormée de gradients cycliques et une base (non orthogonale) du champ de vecteurs libre homogène à divergence nulle sur l’espace de Fock plein et déterminons la dimension du champ de vecteurs libre au sens de Voiculescu à divergence nulle de degré k ou moins.
En outre, nous donnons une formule concrète pour la projection orthogonale sur l’espace des gradients cycliques ainsi que pour la version libre de la projection de Leray.
We exhibit an orthonormal basis of cyclic gradients and a (non-orthogonal) basis of the homogeneous free divergence-free vector field on the full Fock space and determine the dimension of Voiculescu’s free divergence-free vector field of degree or less. Moreover, we also give a concrete formula for the orthogonal projection onto the space of cyclic gradients as well as the free Leray projection.
Révisé le :
Accepté le :
Publié le :
Keywords: Free probability, Free semi-circular system, Free divergence-free vector fields, Cyclic gradients
Mots-clés : Probabilité libre, système semi-circulaire libre, champ de vecteurs libre à divergence nulle, gradients cycliques.
Hyuga Ito 1 ; Akihiro Miyagawa 2, 3
@article{CRMATH_2024__362_G12_1545_0, author = {Hyuga Ito and Akihiro Miyagawa}, title = {A note on free divergence-free vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {1545--1554}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.631}, language = {en}, }
Hyuga Ito; Akihiro Miyagawa. A note on free divergence-free vector fields. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1545-1554. doi : 10.5802/crmath.631. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.631/
[1] Topological methods in hydrodynamics, Applied Mathematical Sciences, 125, Springer, 2021, xx+455 pages | DOI | MR | Zbl
[2] Differential calculus for fully matricial functions I (2023) (https://arxiv.org/abs/2310.09841)
[3] Tracial smooth functions of non-commuting variables and the free Wasserstein manifold, Diss. Math., Volume 580 (2022), p. 150 | DOI | MR | Zbl
[4] A note on the free and cyclic differential calculus, J. Oper. Theory, Volume 85 (2021) no. 1, pp. 183-215 | DOI | MR | Zbl
[5] A note on cyclic gradients, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 837-841 | DOI | MR | Zbl
[6] Cyclomorphy, Int. Math. Res. Not., Volume 2002 (2002) no. 6, pp. 299-332 | DOI | MR | Zbl
[7] Free entropy, Bull. Lond. Math. Soc., Volume 34 (2002) no. 3, pp. 257-278 | DOI | MR | Zbl
[8] A hydrodynamic exercise in free probability: setting up free Euler equations, Expo. Math., Volume 38 (2020) no. 2, pp. 271-283 | DOI | MR | Zbl
[9] Symmetries of some reduced free product -algebras, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) (Lecture Notes in Mathematics), Volume 1132, Springer, 1985, pp. 556-588 | DOI | MR | Zbl
[10] The analogues of entropy and of Fisher’s information measure in free probability theory. V. Noncommutative Hilbert transforms, Invent. Math., Volume 132 (1998) no. 1, pp. 189-227 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique