Comptes Rendus
Article de recherche - Analyse numérique
Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds
[Bornes d’erreur pour la réduction de modèles sur des variétés construites par des applications polynomiales]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1881-1891.

Pour la réduction de l’ordre des modèles basée sur la projection d’un sous-espace linéaire, il est bien connu que la largeur de Kolmogorov n décrit la meilleure erreur possible pour un modèle d’ordre réduit de taille n. Dans cet article, nous fournissons des bornes d’erreur pour les modèles d’ordre réduit sur des variétés construites par des applications polynomiales. En particulier, nous montrons que les bornes d’erreur dépendent du degré polynomial p de l’application ainsi que de la largeur linéaire de Kolmogorov n pour le problème sous-jacent. Il en résulte une largeur de Kolmogorov (n,p), qui décrit une borne inférieure pour la meilleure erreur possible pour un modèle d’ordre réduit sur des variété construites par des applications polynomiales du degré polynomial p et de taille réduite n.

For projection-based linear-subspace model order reduction (MOR), it is well known that the Kolmogorov n-width describes the best-possible error for a reduced order model (ROM) of size n. In this paper, we provide approximation bounds for ROMs on polynomially mapped manifolds. In particular, we show that the approximation bounds depend on the polynomial degree p of the mapping function as well as on the linear Kolmogorov n-width for the underlying problem. This results in a Kolmogorov (n,p)-width, which describes a lower bound for the best-possible error for a ROM on polynomially mapped manifolds of polynomial degree p and reduced size n.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.632
Classification : 41A45, 41A46, 41A65, 65L70, 65M15, 65N15
Keywords: Model Order Reduction, nonlinear manifolds, polynomial mappings, polynomial $(n,p)$-widths
Mots-clés : Réduction de l’ordre des modèles, variétés non linéaires, transformations polynomiales, $(n,p)$-épaisseur polynomiales

Patrick Buchfink 1, 2 ; Silke Glas 2 ; Bernard Haasdonk 1

1 Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
2 University of Twente, Department of Applied Mathematics, P.O. Box 217, 7500 AE Enschede, The Netherlands
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G13_1881_0,
     author = {Patrick Buchfink and Silke Glas and Bernard Haasdonk},
     title = {Approximation {Bounds} for {Model} {Reduction} on {Polynomially} {Mapped} {Manifolds}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1881--1891},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.632},
     language = {en},
}
TY  - JOUR
AU  - Patrick Buchfink
AU  - Silke Glas
AU  - Bernard Haasdonk
TI  - Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1881
EP  - 1891
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.632
LA  - en
ID  - CRMATH_2024__362_G13_1881_0
ER  - 
%0 Journal Article
%A Patrick Buchfink
%A Silke Glas
%A Bernard Haasdonk
%T Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds
%J Comptes Rendus. Mathématique
%D 2024
%P 1881-1891
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.632
%G en
%F CRMATH_2024__362_G13_1881_0
Patrick Buchfink; Silke Glas; Bernard Haasdonk. Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1881-1891. doi : 10.5802/crmath.632. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.632/

[1] Markus Bachmayr; Albert Cohen Kolmogorov widths and low-rank approximations of parametric elliptic PDEs, Math. Comput., Volume 86 (2017) no. 304, pp. 701-724 | DOI | Zbl

[2] Joshua L Barnett; Charbel Farhat Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projection-based model order reduction, J. Comput. Phys., Volume 464 (2022), 111348, 20 pages | DOI | Zbl

[3] Joshua L Barnett; Charbel Farhat; Yvon Maday Mitigating the Kolmogorov Barrier for the Reduction of Aerodynamic Models using Neural-Network-Augmented Reduced-Order Models, AIAA SCITECH 2023 Forum (2023) (article no. 0535) | DOI

[4] Peter Benner; Pawan Goyal; Jan Heiland; Igor Pontes Duff A quadratic decoder approach to nonintrusive reduced-order modeling of nonlinear dynamical systems, PAMM, Volume 23 no. 1, e202200049 | DOI

[5] Stephen Boyd; Lieven Vandenberghe Convex optimization, Cambridge University Press, 2004, xiv+716 pages | DOI | MR | Zbl

[6] Albert Cohen; Ronald DeVore; Christoph Schwab Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s, Anal. Appl., Singap., Volume 9 (2011) no. 1, pp. 11-47 | DOI | Zbl

[7] Albert Cohen; Charbel Farhat; Yvon Maday; Agustin Somacal Nonlinear compressive reduced basis approximation for PDE’s, C. R. Méc. Acad. Sci. Paris, Volume 351 (2023) no. S1, pp. 357-374 | DOI

[8] Maria Cruz Varona Model Reduction of Nonlinear Dynamical Systems by System-Theoretic Methods, Dissertation, Technische Universität München (2020)

[9] Ronald DeVore; Ralph Howard; Charles Micchelli Optimal nonlinear approximation, Manuscr. Math., Volume 63 (1989) no. 4, pp. 469-478 | DOI | Zbl

[10] Stefania Fresca; Andrea Manzoni POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition, Comput. Meth. Appl. Mech. Eng., Volume 388 (2022), 114181, 27 pages | DOI | Zbl

[11] Rudy Geelen; Laura Balzano; Karen Willcox Learning Latent Representations in High-Dimensional State Spaces Using Polynomial Manifold Constructions, 2023 62nd IEEE Conference on Decision and Control (CDC), IEEE (2023), pp. 4960-4965 | DOI

[12] Chenjie Gu Model order reduction of nonlinear dynamical systems, Dissertation, University of California (2011)

[13] Constantin Greif; Karsten Urban Decay of the Kolmogorov N-width for wave problems, Appl. Math. Lett., Volume 96 (2019), pp. 216-222 | DOI | Zbl

[14] Rudy Geelen; Stephen Wright; Karen Willcox Operator inference for non-intrusive model reduction with quadratic manifolds, Comput. Meth. Appl. Mech. Eng., Volume 403 (2023), 115717, 24 pages | DOI | Zbl

[15] Bernard Haasdonk Reduced basis methods for parametrized PDEs – a tutorial introduction for stationary and instationary problems, Model reduction and approximation (Comput. Sci. Eng.), Volume 15, Society for Industrial and Applied Mathematics, 2017, pp. 65-136 | DOI | MR

[16] Opal Issan; Boris Kramer Predicting solar wind streams from the inner-heliosphere to Earth via shifted operator inference, J. Comput. Phys., Volume 473 (2023), 111689, 25 pages | DOI | Zbl

[17] Shobhit Jain; Paolo Tiso; Johannes B Rutzmoser; Daniel J Rixen A quadratic manifold for model order reduction of nonlinear structural dynamics, Comput. & Structures, Volume 188 (2017), pp. 80-94 | DOI

[18] A Kolmogorov Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse, Ann. Math., Volume 37 (1936) no. 1, pp. 107-110 | DOI | Zbl

[19] Yvon Maday; Anthony T. Patera; Gabriel Turinici A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations, J. Sci. Comput., Volume 17 (2002) no. 1-4, pp. 437-446 | DOI | MR | Zbl

[20] Yvon Maday; Anthony T. Patera; G. Turinici Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 3, pp. 289-294 | DOI | Numdam | MR | Zbl

[21] Mario Ohlberger; Stephan Rave Reduced Basis Methods: Success, Limitations and future Challenges, Proc. ALGORITMY (2016), pp. 1-12

[22] Allan Pinkus n-Widths in Approximation Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 7, Springer, 1985 | DOI | Zbl

[23] Johannes B Rutzmoser; Daniel J Rixen; Paolo Tiso; Shobhit Jain Generalization of quadratic manifolds for reduced order modeling of nonlinear structural dynamics, Comput. & Structures, Volume 192 (2017), pp. 196-209 | DOI

[24] Harsh Sharma; Hongliang Mu; Patrick Buchfink; Rudy Geelen; Silke Glas; Boris Kramer Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds, Comput. Methods Appl. Mech. Eng., Volume 417 (2023) no. part A, 116402, 28 pages | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique