[Bornes d’erreur pour la réduction de modèles sur des variétés construites par des applications polynomiales]
Pour la réduction de l’ordre des modèles basée sur la projection d’un sous-espace linéaire, il est bien connu que la largeur de Kolmogorov n décrit la meilleure erreur possible pour un modèle d’ordre réduit de taille . Dans cet article, nous fournissons des bornes d’erreur pour les modèles d’ordre réduit sur des variétés construites par des applications polynomiales. En particulier, nous montrons que les bornes d’erreur dépendent du degré polynomial de l’application ainsi que de la largeur linéaire de Kolmogorov pour le problème sous-jacent. Il en résulte une largeur de Kolmogorov , qui décrit une borne inférieure pour la meilleure erreur possible pour un modèle d’ordre réduit sur des variété construites par des applications polynomiales du degré polynomial et de taille réduite .
For projection-based linear-subspace model order reduction (MOR), it is well known that the Kolmogorov -width describes the best-possible error for a reduced order model (ROM) of size . In this paper, we provide approximation bounds for ROMs on polynomially mapped manifolds. In particular, we show that the approximation bounds depend on the polynomial degree of the mapping function as well as on the linear Kolmogorov -width for the underlying problem. This results in a Kolmogorov -width, which describes a lower bound for the best-possible error for a ROM on polynomially mapped manifolds of polynomial degree and reduced size .
Révisé le :
Accepté le :
Publié le :
Keywords: Model Order Reduction, nonlinear manifolds, polynomial mappings, polynomial $(n,p)$-widths
Mots-clés : Réduction de l’ordre des modèles, variétés non linéaires, transformations polynomiales, $(n,p)$-épaisseur polynomiales
Patrick Buchfink 1, 2 ; Silke Glas 2 ; Bernard Haasdonk 1
@article{CRMATH_2024__362_G13_1881_0, author = {Patrick Buchfink and Silke Glas and Bernard Haasdonk}, title = {Approximation {Bounds} for {Model} {Reduction} on {Polynomially} {Mapped} {Manifolds}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1881--1891}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.632}, language = {en}, }
TY - JOUR AU - Patrick Buchfink AU - Silke Glas AU - Bernard Haasdonk TI - Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds JO - Comptes Rendus. Mathématique PY - 2024 SP - 1881 EP - 1891 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.632 LA - en ID - CRMATH_2024__362_G13_1881_0 ER -
%0 Journal Article %A Patrick Buchfink %A Silke Glas %A Bernard Haasdonk %T Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds %J Comptes Rendus. Mathématique %D 2024 %P 1881-1891 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.632 %G en %F CRMATH_2024__362_G13_1881_0
Patrick Buchfink; Silke Glas; Bernard Haasdonk. Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1881-1891. doi : 10.5802/crmath.632. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.632/
[1] Kolmogorov widths and low-rank approximations of parametric elliptic PDEs, Math. Comput., Volume 86 (2017) no. 304, pp. 701-724 | DOI | Zbl
[2] Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projection-based model order reduction, J. Comput. Phys., Volume 464 (2022), 111348, 20 pages | DOI | Zbl
[3] Mitigating the Kolmogorov Barrier for the Reduction of Aerodynamic Models using Neural-Network-Augmented Reduced-Order Models, AIAA SCITECH 2023 Forum (2023) (article no. 0535) | DOI
[4] A quadratic decoder approach to nonintrusive reduced-order modeling of nonlinear dynamical systems, PAMM, Volume 23 no. 1, e202200049 | DOI
[5] Convex optimization, Cambridge University Press, 2004, xiv+716 pages | DOI | MR | Zbl
[6] Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s, Anal. Appl., Singap., Volume 9 (2011) no. 1, pp. 11-47 | DOI | Zbl
[7] Nonlinear compressive reduced basis approximation for PDE’s, C. R. Méc. Acad. Sci. Paris, Volume 351 (2023) no. S1, pp. 357-374 | DOI
[8] Model Reduction of Nonlinear Dynamical Systems by System-Theoretic Methods, Dissertation, Technische Universität München (2020)
[9] Optimal nonlinear approximation, Manuscr. Math., Volume 63 (1989) no. 4, pp. 469-478 | DOI | Zbl
[10] POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition, Comput. Meth. Appl. Mech. Eng., Volume 388 (2022), 114181, 27 pages | DOI | Zbl
[11] Learning Latent Representations in High-Dimensional State Spaces Using Polynomial Manifold Constructions, 2023 62nd IEEE Conference on Decision and Control (CDC), IEEE (2023), pp. 4960-4965 | DOI
[12] Model order reduction of nonlinear dynamical systems, Dissertation, University of California (2011)
[13] Decay of the Kolmogorov N-width for wave problems, Appl. Math. Lett., Volume 96 (2019), pp. 216-222 | DOI | Zbl
[14] Operator inference for non-intrusive model reduction with quadratic manifolds, Comput. Meth. Appl. Mech. Eng., Volume 403 (2023), 115717, 24 pages | DOI | Zbl
[15] Reduced basis methods for parametrized PDEs – a tutorial introduction for stationary and instationary problems, Model reduction and approximation (Comput. Sci. Eng.), Volume 15, Society for Industrial and Applied Mathematics, 2017, pp. 65-136 | DOI | MR
[16] Predicting solar wind streams from the inner-heliosphere to Earth via shifted operator inference, J. Comput. Phys., Volume 473 (2023), 111689, 25 pages | DOI | Zbl
[17] A quadratic manifold for model order reduction of nonlinear structural dynamics, Comput. & Structures, Volume 188 (2017), pp. 80-94 | DOI
[18] Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse, Ann. Math., Volume 37 (1936) no. 1, pp. 107-110 | DOI | Zbl
[19] A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations, J. Sci. Comput., Volume 17 (2002) no. 1-4, pp. 437-446 | DOI | MR | Zbl
[20] Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 3, pp. 289-294 | DOI | Numdam | MR | Zbl
[21] Reduced Basis Methods: Success, Limitations and future Challenges, Proc. ALGORITMY (2016), pp. 1-12
[22] n-Widths in Approximation Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 7, Springer, 1985 | DOI | Zbl
[23] Generalization of quadratic manifolds for reduced order modeling of nonlinear structural dynamics, Comput. & Structures, Volume 192 (2017), pp. 196-209 | DOI
[24] Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds, Comput. Methods Appl. Mech. Eng., Volume 417 (2023) no. part A, 116402, 28 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique