[Quelques énigmes apparaissant dans l’inférence statistique]
Le théorème de Rao-Blackwell est largement connu pour être une technique mathématique puissante qui peut être utilisée pour améliorer la précision d’un estimateur. La procédure consiste à exploiter une statistique suffisante pour obtenir un estimateur amélioré ou un estimateur sans biais à variance uniformément minimale. Nous présentons ici une modification des statistiques suffisantes qui peut être appliquée au théorème de Rao-Blackwell ainsi que quelques applications fructueuses qui illustrent ses propriétés. De plus, certains théorèmes ont été réécrits dans le cadre de l’inférence statistique.
Rao-Blackwell theorem is widely known to be a mathematically powerful technique that can be used to improve the precision of an estimator. The procedure entails exploiting a sufficient statistic to obtain an improved estimator or a uniformly minimum variance unbiased estimator. A modification of sufficient statistics is introduced here which can be applied for Rao-Blackwell theorem along with some fruitful applications that illustrate its properties. Also some theorems have been rewritten in statistical inference.
Accepté le :
Publié le :
Keywords: Complete minimal sufficient statistic, Incomplete minimal sufficient statistic, Minimal sufficient statistic, Rao–Blackwell theorem, Sufficient statistic
Mot clés : Statistique suffisante minimale complète, statistique suffisante minimale incomplète, statistique suffisante minimale, théorème de Rao–Blackwell, statistique suffisante
Seyf Alemam 1 ; Hazhir Homei 1 ; Saralees Nadarajah 2
@article{CRMATH_2024__362_G10_1243_0, author = {Seyf Alemam and Hazhir Homei and Saralees Nadarajah}, title = {Some puzzles appearing in statistical inference}, journal = {Comptes Rendus. Math\'ematique}, pages = {1243--1252}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.636}, language = {en}, }
Seyf Alemam; Hazhir Homei; Saralees Nadarajah. Some puzzles appearing in statistical inference. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1243-1252. doi : 10.5802/crmath.636. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.636/
[1] On unbiased estimates of uniformly minimum variance, Sankhyā, Ser. A, Volume 18 (1957), pp. 211-224 | MR | Zbl
[2] Applications of Basu’s theorem, Am. Stat., Volume 52 (1998) no. 3, pp. 218-221 | DOI | MR
[3] Conditional expectation and unbiased sequential estimation, Ann. Math. Stat., Volume 18 (1947), pp. 105-110 | DOI | MR | Zbl
[4] On uniformly minimum variance unbiased estimation when no complete sufficient statistics exist, Metrika, Volume 30 (1983) no. 1, pp. 49-54 | DOI | MR | Zbl
[5] Statistical Inference, Duxbury Press, 2002
[6] A mathematical Examination of the Methods of determining the Accuracy of Observation by the Mean Error,and by the Mean Square Error, Mon. Not. Roy. Astron. Soc., Volume 80 (1920) no. 8, pp. 758-770 | DOI
[7] UMVUE of the stress-strength reliability for a class of distributions by using the estimates of reliability, J. Stat. Manag. Sys., Volume 21 (2018) no. 2, pp. 217-223 | DOI
[8] Theory of point estimation, Springer Texts in Statistics, Springer, 1998, xxvi+589 pages | MR | Zbl
[9] Theory of point estimation, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1983, xii+506 pages | DOI | MR | Zbl
[10] Completeness, similar regions, and unbiased estimation. I, Sankhyā, Ser. A, Volume 10 (1950), pp. 305-340 | DOI | MR | Zbl
[11] Completeness, similar regions, and unbiased estimation. II, Sankhyā, Ser. A, Volume 15 (1955), pp. 219-236 | DOI | MR | Zbl
[12] Estimation When Using a Statistic That is Not Sufficient, Am. Stat., Volume 41 (1987) no. 2, pp. 135-136 | DOI
[13] An Introduction to Probability Theory of Statistics, McGraw-Hill, 1974
[14] Probability and statistical inference, Statistics: Textbooks and Monographs, 162, Marcel Dekker, 2000 | Zbl
[15] Some comments about sufficiency and unbiased estimation, Am. Stat., Volume 48 (1994) no. 3, pp. 242-243 | DOI | MR
[16] Information and the accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc., Volume 37 (1945), pp. 81-91 | MR | Zbl
[17] Linear statistical inference and its applications, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1973, xx+625 pages | DOI | MR | Zbl
[18] An introduction to probability and statistics, Wiley Series in Probability and Statistics, John Wiley & Sons, 2015, xviii+689 pages | DOI | MR | Zbl
[19] A course in mathematical statistics., Academic Press Inc., 1997 | Zbl
[20] Mathematical statistics, Springer Texts in Statistics, Springer, 2003, xvi+591 pages | DOI | MR | Zbl
[21] Completeness and Unbiased Estimation, Am. Stat., Volume 26 (1972) no. 2, pp. 28-29 | DOI
Cité par Sources :
Commentaires - Politique